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Propagation of waves along the star-graph

Ghulam H. Aimal Rasa1,3,a, Baltabek E. Kanguzhin1,2,b, Zhalgas A. Kaiyrbek1,2,c

1Al-Farabi Kazakh National University,Almaty, Kazakhstan
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Communicated by: Makhmud Sadybekov

Received: 24.02.2021 ⋆ Final Version: 06.05.2021 ⋆ Accepted/Published Online: 10.05.2021

Abstract. In this paper, we study a mixed problem for a wave equation on a star-graph with finite arc

lengths. The initial data is considered to be sufficiently smooth. In this case, the solution is determined

by the d’Alembert formula derived in this article. When the star-graph consists of only two arcs, the

d’Alembert formula given in the article coincides with the well-known d’Alembert formula for the mixed

problem for the wave equation on a finite interval. In the case of multipoint mixed problems for the

wave equation on an interval, similar formulas are given in the recent work of N.E. Tokmaganbetov,

B.E. Kanguzhin, B. Bekbolat.

Keywords. Eigenvalues, Kirchhoff conditions, star-graph, wave equation, d’Alembert formula.

1 Introduction

It is known [1] that the solution of the Cauchy problem for the wave equation is given
by the d’Alembert formula. The physical meaning of the d’Alembert formula corresponds to
wave propagation. It is important that solutions to the wave equation can have discontinuities
that propagate along the characteristics. Discontinuous solutions of the wave equation for
a string and a rod have no physical meaning. However, the same equation is satisfied by
the gas pressure in a long narrow pipe. The pressure can be discontinuous. Discontinuous
solutions of the wave equation in gas dynamics are called the shock waves.

The d’Alembert method or the method of incident and reflected waves allows solving not
only the Cauchy problem for the wave equation, but also finding solutions to mixed problems.
In the case of a semi-bounded string, the effect of reflected wave that depends on the form of
the boundary condition is observed. In the case of bounded strings, waves are also reflected,
but this effect occurs in a more complex scenario. Details of highlighted effects can be found
in the book of A.I. Komech [2].

2010 Mathematics Subject Classification: 35M99, 35R99, 53C35.
c⃝ 2021 Kazakh Mathematical Journal. All right reserved.
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In [3, 4], the d’Alembert formula was modified for the mixed multipoint problem for the
wave equation. In this case, the solution to the mixed multipoint problem is assumed to be
sufficiently smooth. An analogue of the d’Alembert formula for the mixed multipoint problem
for the wave equation with initial data of discontinuous first derivatives was derived in [5]. In
this paper, we state and prove the d’Alembert formula for strings representing a star-graph.

2 Basic concepts and notation

Letm be a fixed natural number. We consider the following mixed problem for the system
of wave equations

∂2um+1(xm+1, t)

∂t2
− ∂2um+1(xm+1, t)

∂x2m+1

= 0, 0 < xm+1 < bm+1, t > 0,

∂2um(xm, t)

∂t2
− ∂2um(xm, t)

∂x2m
= 0, 0 < xm < bm, t > 0, (1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂2u1(x1, t)

∂t2
− ∂2u1(x1, t)

∂x21
= 0, 0 < x1 < b1, t > 0,

with conditions of the form (a)

um+1(bm+1, t) = u1(0, t) = . . . = um(0, t), t > 0,

∂um+1(bm+1, t)

∂xm+1
=
∂u1(0, t)

∂x1
+ . . .+

∂um(0, t)

∂xm
, t > 0, (2)

and conditions of the form (b)

um+1(0, t) = 0, u1(b1, t) = 0, . . . , um(bm, t) = 0, t > 0, (3)

and also the initial conditions

um+1(xm+1, 0) = φm+1(xm+1), 0 < xm+1 < bm+1,

∂

∂t
um+1(xm+1, 0) = ψm+1(xm+1), 0 < xm+1 < bm+1,

um(xm, 0) = φm(xm), 0 < xm < bm,

∂

∂t
um(xm, 0) = ψm(xm), 0 < xm < bm, (4)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u1(x1, 0) = φ1(x1), 0 < x1 < b1,

Kazakh Mathematical Journal, 21:2 (2021) 6-14
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∂

∂t
u1(x1, 0) = ψ1(x1), 0 < x1 < b1.

By the results of the works [6–8], the problem (1)–(4) can be interpreted as a mixed problem
for the wave equation on a star-graph Γ = {V,E}. Here V represents the set of vertices,
numbered from 0 to (m + 1), and E is the set of arcs e1, . . . , em+1 [7], [8]. Each one of the
wave equations (1) holds on each arc. The vertex (m+1) ∈ V is called the inner vertex of the
star-graph. The conditions of the form (a) means that the Kirchhoff laws hold at the inner
vertex [9]. The vertices 0, 1, . . . ,m are called the boundary vertices of the star-graph (Fig.
1). Conditions of type (b) represent a set of boundary conditions. For m = 1 the problem
(1)–(4) coincides with the mixed problem for the wave equation

∂2w

∂t2
− ∂w

∂x2
= 0, 0 < x < b1 + b2, t > 0, (5)

w(0, t) = 0, w(b1 + b2, t) = 0, t > 0, (6)

w(x, 0) = φ(x),
∂w(x, 0)

∂t
= ψ(x), 0 < x < b1 + b2. (7)

Fig. 1: Star-graph

Kazakh Mathematical Journal, 21:2 (2021) 6-14
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In this case, the d’Alembert formula

w(x, t) =
φ̃(x+ t) + φ̃(x− t)

2
+

1

2

x+t∫
x−t

ψ̃(ξ)dξ, 0 < x < b1 + b2, t > 0, (8)

holds, here φ̃(x) and ψ̃(x) are the continuations of the functions φ(x) and ψ(x) from the
interval [0, b1 + b2] to the entire real axis, which are obtained by the following algorithm:

1. first, we continue in an odd way from the interval [0, b1+b2] to the interval [−b1−b2, 0];
2. then we continue periodically from the interval [−b1−b2, b1+b2] to the entire real axis.
In this paper, an analog of formula (8) is obtained for the mixed problem (1)–(4) on a

star-graph.
To do this, we need the dependence of the solution to the system of differential equations

on the spectral parameter

−y′′j (xj) = ρ2yj(xj), 0 < xj < bj , j = 1, 2, . . . ,m+ 1, (9)

with conditions of the form (a)

ym+1(bm+1) = y1(0) = . . . = ym(0), y′m+1(bm+1) = y′1(0) + . . .+ y′m(0) (10)

and conditions of the form (b)

ym+1(0) = 0, ym(bm) = 0, ym−1(bm−1) = 0, . . . y1(b1) = 0. (11)

In the works [6], [7], the required dependence is presented. To formulate the result of [7],
we need the following notation. We denote by Cj(xj , λ) and Sj(xj , λ) the solutions to equation
(9) with the conditions

Sj(0, λ) = C ′
j(0, λ) = 0, Cj(0, λ) = S′

j(0, λ) = 1

for a fixed j from the set {1, 2, . . . ,m+1}. Really, these functions have explicit representations

Cj(xj , λ) = cos ρxj , Sj(xj , λ) =
sin ρxj
ρ

, ρ2 = λ.

The following statement is proved in [7].
Statement 1. Let ym+1(xm+1, λ) = Sm+1(xm+1, λ), xm+1 ∈ em+1. Then the solution to
system (9), (10), (11) has the following form

yj(xj , λ) = Sm+1(bm+1, λ)Cj(xj , λ) +BjS
′
m+1(bm+1, λ)Sj(xj , λ), j = 1, 2, . . . ,m. (12)

Moreover, the constants B1, B2, . . . , Bm satisfy the relation

B1 +B2 + . . .+Bm = 1. (13)

Kazakh Mathematical Journal, 21:2 (2021) 6-14
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Let us denote by {λn, n ≥ 1} the eigenvalues of problem (9),(10),(11). Then, relations
(11) imply the relations

Sm+1(bm+1, λ)Cj(bj , λ) +BjS
′
m+1(bm+1, λ)Sj(bj , λ) = 0, j = 1, 2, . . . ,m, (14)

for λ = λn. Hence

Bj = −Sm+1(bm+1, λn)Cj(bj , λn)

S′
m+1(bm+1, λn)Sj(bj , λn)

, j = 1, 2, . . . ,m.

Then relation (13) implies the dispersion relation

S′
m+1(bm+1, λn)

Sm+1(bm+1, λn)
+

m∑
j=1

Cj(bj , λn)

Sj(bj , λn)
= 0. (15)

We denote the left-hand side of (15) by ∆(λn). We note that

∆(λ) =
√
λ

m+1∑
j=1

cot(bj
√
λ).

Lemma 1. Zeros of an entire function ∆(λ) are real and simple.
Proof. The simplicity of the eigenvalues follows from the inequality

∆′(λn) = −1

2

m+1∑
j=1

1

sin2(bj
√
λn)

< 0.

Example 1. We calculate the zeros of the function ∆(λ) for m = 2, b1 =
5

π
, b2 =

4

π
,

b3 =
3

π
by the graphical method.

We find the first six zeros of the function ∆(λ):

ρ1 = A = 1.23, ρ2 = B = 2.17, ρ3 = C = 3.02, ρ4 = D = 3.7, ρ5 = E = 4.46, ρ6 = F = 5.41

from Figure 2.

Kazakh Mathematical Journal, 21:2 (2021) 6-14
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Fig. 2: Eigenvalues of the function ∆(λ).

In this case, the corresponding system of eigenfunctions has the following form

w1(x1, λn) =
sin

√
λn(b1 − x1)√
λn

S2(b2, λn) . . . Sm(bm, λn)Sm+1(bm+1, λn),

w2(x1, λn) = S1(b1, λn)
sin

√
λn(b2 − x2)√
λn

S3(b3, λn) . . . Sm(bm, λn)Sm+1(bm+1, λn),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
wm(xm, λn) = S1(b1, λn)S2(b2, λn)S3(b3, λn) . . .

. . . Sm−1(bm−1, λn)
sin

√
λn(bm − xm)√

λn
Sm+1(bm+1, λn),

wm+1(xm+1, λn) = S1(b1, λn)S2(b2, λn)S3(b3, λn) . . . Sm(bm, λn)
sin

√
λn xm+1√
λn

.

(16)
The work of N.P Bondarenko [10] implies that problem (9), (10), (11) is self-adjoint in L2(Γ).
Therefore, system (16) represents an orthogonal basis in space L2(Γ). Recall that in L2(Γ)
the inner product is introduced by the rule

(y, z) =
m+1∑
j=1

(yj , zj) =
m+1∑
j=1

bj∫
0

yj(xj)zj(xj)dxj , y, z ∈ L2(Γ).

We denote by Φ = (φ1(x1), φ2(x2), . . . , φm+1(xm+1)) and

Kazakh Mathematical Journal, 21:2 (2021) 6-14
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Ψ = (ψ1(x1), ψ2(x2), . . . , ψm+1(xm+1)) the initial data (4). We denote by

Wn = (w1(x1, λn), w2(x2, λn), . . . , wm+1(xm+1, λn))

the eigenfunction corresponding to the eigenvalue λn. Further, we assume that the initial
data Φ,Ψ are subject to the matching conditions (2) and (3). Then the functions Φ,Ψ can
be expanded into the series with respect to the eigenfunctions

Φ =
∑
n

Dn(Φ)Wn, Ψ =
∑
n

Dn(Ψ)Wn, (17)

which converge uniformly in L2(Γ). A similar theorem for differential operators on an inter-
val is proved in the monograph of M.A Naymark [11]. This theorem holds for differential
operators defined on graphs. We note that the Fourier coefficients {Dn(Φ)}, {Dn(Ψ)} are
determined by the standard formulas

Dn(Φ) =
(Φ,Wn)

(Wn,Wn)
, Dn(Ψ) =

(Ψ,Wn)

(Wn,Wn)
.

Relations (17) can be rewritten in the coordinate-wise form
φj(xj) =

∑
n
Dn(Φ)wj(xj , λn),

ψj(xj) =
∑
n
Dn(Ψ)wj(xj , λn), j = 1, 2, . . . ,m+ 1.

(18)

Without loss of generality, we derive an analogue of the d’Alembert formula for Ψ ̸= 0. Since
there is a standard technique for obtaining the d’Alembert formula for case Ψ ̸= 0, if the
formula is known at Φ ̸= 0 Ψ ≡ 0. Let Ψ ≡ 0. The solution of the mixed problem on the
graph (1)–(4) is sought in the form

uj(xjt) =
∑
n

dn(t)wj(xj , λn), 0 < xj < bj , j = 1, . . . ,m+ 1.

Then it is easy to understand that

dn(t) = Dn(Φ) cos
√
λn · t, n ≥ 1.

Thus, the solution can be represented as follows

uj(xj , t) =
∑
n

Dn(Φ) cos
√
λnt · wj(xj , λn), 0 < xj < bj , t > 0, j = 1, . . . ,m+ 1. (19)

The next lemma contains one useful property of the product cos
√
λnt · wj(xj , λn) with

fixed n and j.
Lemma 2. The following identity

cos
√
λnt · wj(xj , λn) =

1

2
wj(xj − t, λn) +

1

2
wj(xj + t, λn)
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holds for fixed n and j.
Proof. The identity

cos
√
λnt ·

sin
√
λn(bj − xj)√
λn

=
1

2

sin
√
λn(bj − xj + t)√

λn
+

1

2

sin
√
λn(bj − xj − t)√

λn

implies the proof of Lemma 2. The series (18) converge uniformly on the arc ej for each fixed
j = 1, 2, . . . ,m+ 1.

Continuation by rule A: we continue the functions φj(xj) and ψj(xj) from the arc ej for
the entire real axis xj ∈ R, we will define their values by the right-hand sides of relations

(18). We denote the obtained corresponding extensions by φ̃(xj) and ψ̃j(xj) for xj ∈ R.

Then Lemma 2 and formula (19) imply the main statement of this work.
Theorem 1. Let the initial data Φ = (φ1(x1), φ2(x2), . . . , φm+1(xm+1)) and Ψ =
(ψ1(x1), ψ2(x2), . . . , ψm+1(xm+1)) be twice continuously differentiable functions on graph Γ
and satisfy conditions (2) and (3). Then the mixed problem (1)–(4) on the graph has a unique
solution, which can be represented in the form

uj(xj , t) =
1

2
φ̃j(xj + t) +

1

2
φ̃j(xj + t) +

1

2

xj+t∫
xj−t

ψ̃(ξ)dξ. j = 1, 2, . . . ,m+ 1,

where φ̃j and ψ̃j are continuations of the functions φj and ψj from the arc ej to the entire
real axis by the rule A.
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Аймал Раса Г.Х., Кангужин Б.Е., Қайырбек Ж.А. ЖҰЛДЫЗ-ГРАФ БОЙЫНДАҒЫ
ТОЛҚЫННЫҢ ТАРАЛУЫ

Бұл мақалада доға ұзындығы шектелген жұлдыз-графтағы аралас толқын теңдеуiнiң
есебiн зерттеймiз. Бастапқы шарттар жеткiлiктi жатық болып саналады. Бұл жағдайда
шешiм мақалада келтiрiлген Даламбер формуласына сәйкес анықталады. Жұлдыз-граф
тек екi доғадан тұрғанда, мақалада келтiрiлген Даламбер формуласы ақырлы кесiндiдегi
толқын теңдеуi үшiн белгiлi Даламбер формуласымен сәйкес келедi. Кесiндiдегi толқын
теңдеуiне арналған көп нүктелi аралас есептер жағдайына ұқсас формулалар Н.Е. Тоқ-
мағанбетов, Б.Е.Кангужин, Б. Бекболаттың жұмысында келтiрiлген.

Кiлттiк сөздер. Меншiктi мәндер, Кирхгоф шарттары, жұлдыз-граф, толқын теңдеуi,
Даламбер формуласы.

Аймал Раса Г.Х., Кангужин Б.Е., Қайырбек Ж.А. РАСПРОСТРАНЕНИЕ ВОЛН
ВДОЛЬ ГРАФА-ЗВЕЗДЫ

В данной статье изучается смешанная задача для волнового уравнения на графе-
звезде с конечными длинами дуг. Начальные данные считаются достаточна гладкими. В
таком случае решение определяется согласно выведенной в статье формуле Даламбера.
Когда граф-звезда состоит только из двух дуг, приведенная в статье формула Даламбера
совпадает с известной формулой Даламбера для смешанной задачи для волнового урав-
нения на конечном отрезке. В случае многоточечных смешанных задач для волнового
уравнения на отрезке подобные формулы приведены в недавней работе Н.Е. Токмаган-
бетова, Б.Е. Кангужина, Б. Бекболата.

Ключевые слова. Собственные значения, условия Кирхгофа, граф-звезда, волновое
уравнение, формула Даламбера.
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Abstract. Earlier, in the works [1] and [2] the correctness of the Dirichlet boundary value problem for

the Burgers equation was established. In contrast to these works, in Sobolev spaces and in an angular

domain, we show the correctness of the boundary value problem for the Burgers equation with dynamic

boundary conditions. The methods of functional analysis, a priori estimates, and Faedo-Galerkin are

used.

Keywords. Burgers equation, Sobolev class, degenerating domain, dynamic boundary condition, a priori

estimate.

1 Introduction

The study of the Burgers equation has a long history, some of which is given in [1] and
[2], as well as in the monographs [3] and [4].

In the works [1] and [2] in Sobolev spaces, the correctness of the boundary value problem
for the Burgers equation was established. In this case, the domain of independent variables
degenerated according to a nonlinear law, and homogeneous Dirichlet conditions were set on
the boundary.

In angular domains, problems of linear thermal conductivity with time derivatives in
boundary conditions were studied in [5]. The correctness of the problems under consideration
was proved in weighted Hölder classes. Further, these results were developed in [6]–[8].

The infiltration of the wetting front into a porous medium is a classical problem with
a free boundary. Historically, the first and best known example is the Green-Ampt model
for water flow in soils [9]. There is a huge variety of situations (chemically reacting media,
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c© 2021 Kazakh Mathematical Journal. All right reserved.



16 Muvasharkhan Jenaliyev, Madi Yergaliyev

deformable media, capillarity effects, mass transfer, mixture flows, media with a complex
structure, pollution, reclamation, soil freezing, production of composite materials, brewing,
etc.).

As is known, nonlinear Burgers equations and their modifications are also suitable models
of fluid motion in porous media [10]–[15].

The range of application of boundary value problems for parabolic equations in a domain
with a boundary that changes over time is quite wide. Such problems arise in the study of
thermal processes in electrical contacts [16], the processes of ecology and medicine [17], in
solving some problems of hydromechanics [18], thermomechanics in thermal shock [19] and
so on.

Extensive literature is devoted to the study of the solvability of linear and nonlinear
parabolic equations in cylindrical domains. However, as for nonlinear boundary value prob-
lems in degenerating non-cylindrical domains, they have been studied relatively little.

For angular domains in Lebesgue classes, there were studied boundary value problems
of heat conduction with the homogeneous Dirichlet boundary conditions and established
theorems on their solvability by reducing them to the Volterra singular integral equations of
the second kind [20], [21].

In [22] there were studied various cases of the nonhomogeneous Dirichlet type boundary
conditions. In these cases, it is shown that both unique solvability and non-unique solvability
for the corresponding boundary value problems takes place.

In this paper, in Sobolev classes, we study the solvability of the boundary value problem
for the Burgers equation in an angular domain with time derivatives in boundary conditions
(in a sense, an analogue of Solonnikov-Fasano problem [5] for the Burgers equation). We
are considering the case: when one part of the boundary is motionless, and the other part is
movable.

In Section 2, we give a statement of the boundary value problem under study. Here also,
this problem is reduced to the study of the solvability of two subproblems, and we formulate
the main results of the work. We study the questions of unique solvability of two auxiliary
boundary value problems for the Burgers equation in rectangular domains, which are used
in the proof of the main results of the work. Sections 3–7 are devoted to the first auxiliary
problem, in which its correctness in the Sobolev classes is established by the methods of
a priori estimates and Faedo-Galerkin. The correctness of the second auxiliary boundary
value problem is shown in Section 8. In Sections 9–11, we prove Theorem 1 on the unique
solvability of the problem posed in Section 2. A brief conclusion concludes the work.

2 Problem statement and main result

Let Qxt = {x, t | 0 < x < kt, 0 < t < T < ∞, k > 0} be a domain that degenerates at
t = 0, and let Ωt be a section of the domain Qxt for a fixed value of the variable t ∈ (0, T ). In
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On Burgers equation with dynamic boundary conditions in angular domain 17

the domain Qxt we consider the following boundary value problem for the Burgers equation:

∂ tu+ u∂xu− ν∂2xu = f, (1)

d

dt
u(0, t) + b0

[
1

3
(u)2 − ν∂xu

] ∣∣
x=0

= 0, (2)

d

dt
u(kt, t)− b1

[
1

3
(u)2 − ν∂xu

] ∣∣
x=kt

= 0, (3)

where d
dtu(ϕ(t), t) = [∂tu(x, t) + ϕ ′(t)∂xu(x, t)]x=ϕ(t),

f ∈ L2(Qxt), ν = const > 0, b0 = const > 0, b1 = const > 0. (4)

Remark 1. We believe that the presence of the nonlinear term u2/3 in the boundary
conditions (2)–(3) is dictated only by the presence of the convective component in the Burgers
equation, which provides a nonlinear ”mass” transfer and exchange at the boundary. We
proceeded from the fact that in equation (1) the convective and diffusion terms can be written
in the form ∂x

(
u2/2− ν∂xu

)
.

Problem 1. Under conditions (4), establish the solvability of boundary value problem (1)–
(3).

Theorem 1 (Main result). Let f ∈ L2(Qxt) (4). Then boundary value problem (1)–(3)
has a unique solution

u ∈ H2,1(Qxt) ≡
{
L2(0, T ;H2(0, kt)) ∩H1(0, T ;L2(0, kt))

}
,

u(kt, t), u(0, t) ∈ H1(0, T ).

The proof of Theorem 1 is given below.

3 The first auxiliary initial boundary value problem

In the domain Qyt = {y, t| y ∈ (0, 1), t ∈ (0, T )} we consider the following auxiliary initial
boundary value problem:

∂tw + α(t)w∂yw − β(t)∂2yw + γ(y, t)∂yw = g, (5)

d

dt
w(0, t) +

b0
α(t)

[
α(t)

3
w2 − β(t)∂yw

] ∣∣
y=0

= 0, (6)

d

dt
w(1, t)− b1

α(t)

[
α(t)

3
w2 − β(t)∂yw

] ∣∣
y=1

= 0, 0 < t < T, (7)
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w(y, 0) = 0, 0 < y < 1, (8)

where b0, b1 are given positive constants, and the given continuous functions α(t), β(t), γ(y, t)
satisfy conditions

α′(t) ≤ 0, α1 ≤ α(t) ≤ α2, β1 ≤ β(t) ≤ β2, |γ(y, t)| ≤ γ1, |∂yγ(y, t)| ≤ γ1, ∀ t ∈ [0, T ], (9)

with the given positive constants αi, βi, i = 1, 2, γ1, α(t) ∈ C1([0, T ]), ∂yγ(y, t) ∈ C(Q̄yt).

Theorem 2. Let g ∈ L2(Qyt) and conditions (9) be satisfied. Then boundary value problem
(5)–(8) has a unique solution

w ∈ H2,1(Qyt) ≡ L2(0, T ;H2(0, 1)) ∩H1(0, T ;L2(0, 1)), w(1, t), w(0, T ) ∈ H1(0, T ).

To apply the Faedo-Galerkin method, we need to solve the following spectral problem:

−Y ′′(y) = λ2Y (y), y ∈ (0, 1), (10)

Y ′(0) + λ2Y (0) = 0, (11)

Y ′(1)− λ2Y (1) = 0, (12)

obtained by applying the variable separation method (u(y, t) = F (t)Y (y)) from the following
problem

∂tu− ∂2yu = 0, y ∈ (0, 1), t ∈ (0, T ),

∂tu− ∂xu
∣∣
y=0

= 0, ∂tu+ ∂xu
∣∣
y=1

= 0,

u(y, 0) = u0(y).

4 Solving spectral problem (10)–(12)

We seek the general solution to equation (10) in the form

Y (y) = C1 exp{iλy}+ C2 exp{−iλy}, i =
√
−1. (13)

Satisfying (13) to boundary conditions (11)–(12), we obtain

Y01(y) = 1, λ01 = 0, tan
λ01
2

= −λ01, (14)

Y2n−1(y) = cos
λ2n−1(1− 2y)

2
, λ2n−1 = (2n− 1)π + ε2n−1, tan

λ2n−1
2

= −λ2n−1, n ∈ N,
(15)
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Y02(y) = sin
λ02(1− 2y)

2
, λ02 ≈

2π

5
, cot

λ02
2

= λ02, (16)

Y2n(y) = sin
λ2n(1− 2y)

2
, λ2n = 2nπ + ε2n, cot

λ2n
2

= λ2n, n ∈ N. (17)

It is easy to see that the solutions of equations

tan
λ2n−1

2
= −λ2n−1, n ∈ N, (18)

and

cot
λ2n
2

= λ2n, n ∈ N, (19)

are, respectively, close to points (2n − 1)π and 2nπ, n ∈ N, and with the growth of n they
approach arbitrarily close from the right to the corresponding specified points (2n− 1)π and
2nπ, n ∈ N, i.e. εn → 0+ at n → ∞. If we introduce the notation 2x = (1− 2y)π, then we
get: x ∈ (−π/2, π/2).

By the Paley-Wiener theorem ([24], chapter V, 86, example), the system of functions (15)
and (17) is complete in L2(0, 1), since the system of functions:

√
2 cosx√
π

,

√
2 sin 2x√
π

,

√
2 cos 3x√

π
,

√
2 sin 4x√
π

, ..., (20)

which is complete in L2(−π/2, π/2), will differ little from it. For the latter system, it is
sufficient to make the replacement x1 = x+ π/2. We get the system of sines:

√
2 sinx1√
π

,

√
2 sin 2x1√

π
,

√
2 sin 3x1√

π
,

√
2 sin 4x1√

π
, ...,

which is complete in L2(0, π).
Note that the system of functions (15) and (17) is not orthogonal in L2(0, 1).

Remark 2. The applicability of the Paley-Wiener theorem ([24], chapter V, 86, example)
follows from the relations:

λ1 ≈ 3.673, λ1 − π ≈ 0.533, Mπ = |λ1 − π| < 0.54 < ln 2 ≈ 0.693, θ = exp{Mπ} − 1 < 1.

5 Setting and solving the approximate problem

We multiply equation (5) scalarly in L2(0, 1) by function v ∈ H1(0, 1). As a result, taking
into account initial (8) and boundary conditions (6)–(7) we will have a weak statement of
problem (5)–(8):

1∫
0

∂twvdy + α(t)

1∫
0

w∂ywvdy + β(t)

1∫
0

∂yw∂yvdy

1∫
0

γ(y, t)∂ywvdy+
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+
α(t)

b1

d

dt
w(1, t)v(1, t)− α(t)

3
w2(1, t)v(1, t) +

α(t)

b0

d

dt
w(0, t)v(0, t)

+
α(t)

3
w2(0, t)v(0, t) =

1∫
0

gvdy, ∀ v ∈ H1(0, 1), (21)

w(y, 0) = 0, y ∈ (0, 1). (22)

We introduce the following approximate solution

wn(y, t) =

n∑
j=1

cj(t)Yj(y), wn(y, 0) =

n∑
j=1

cj(0)Yj(y). (23)

Next, we will satisfy this solution to an approximate version of problem (21)–(22):

1∫
0

∂twnYjdy + α(t)

1∫
0

wn∂ywnYjdy + β(t)

1∫
0

∂ywn∂yYjdy +

1∫
0

γ(y, t)∂ywnYjdy

+
α(t)

b1

d

dt
wn(1, t)Yj(1)− α(t)

3
w2
n(1, t)Yj(1) +

α(t)

b0

d

dt
wn(0, t)Yj(0)

+
α(t)

3
w2
n(0, t)Yj(0) =

1∫
0

gYjdy, (24)

wn(y, 0) = 0, y ∈ (0, 1), (25)

for all j = 1, ..., n, and t ∈ [0, T ].

Lemma 1. Problem (24)–(25) has a unique solution wn(y, t).

Proof. Since the system of functions Y1(y), Y2(y), ... is a basis in L2(0, 1), we have

det{Wn} =
∥∥({Yk(y), Ȳk(0), Ȳk(1)}, {Yj(y), Ȳj(0), Ȳj(1)}

)∥∥n
k,j=1

6= 0, ∀ finite n;

Wn is a Gram matrix, Ȳk(0) =

√
α(t)√
b0
Yk(0), Ȳk(1) =

√
α(t)√
b1
Yk(1), k = 1, ..., n,(

{Yk(y), Ȳk(0), Ȳk(1)}, {Yj(y), Ȳk(0), Ȳk(1)}
)

= (Yk(y), Yj(y)) +
(
Ȳk(0)Ȳj(0)

)
+
(
Ȳk(1)Ȳj(1)

)
,

(·, ·) is the scalar product in L2(0, 1), An = (∂yYk(y), ∂yYj(y))nk,j=1 ,

w2
n(1, t)Yj(1, t)− w2

n(0, t)Yj(0, t) = [

n∑
k=1

ck(t)Yk(1)]2Yj(1)− [

n∑
k=1

ck(t)Yk(0)]2Yj(0).
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Further, if we introduce the notation

Gn(t) = {g1(t), ..., gn(t)}, Pn(t) = {p1(t), ..., pn(t)}, Hn(t) = {h1(t), ..., hn(t)},

Cn(t) = {c1(t), ..., cn(t)},

where

gj(t) =

1∫
0

gYj(y)dy, pj(t) = −α(t)

1∫
0

wn∂ywnYj(y)dy −
1∫

0

γ(y, t)∂ywn(y, t)Yj(y)dy,

hj(t) =
α(t)

3
[
n∑
k=1

ck(t)Yk(1)]2Yj(1)− [
n∑
k=1

ck(t)Yk(0)]2Yj(0),

for all j = 1, ..., n, then problem (24)–(25) is equivalent to the following Cauchy problem for
a finite system of nonlinear ordinary differential equations

C ′n(t) = W−1n [−β(t)AnCn(t) + Pn(t) +Hn(t) +Gn(t)] , Cn(0) = 0. (26)

Note that the functions pj(t), hj(t) are well defined, and the function gj(t) is square integrable
(by virtue of g ∈ L2(Qyt)). Therefore, the Cauchy problem (26) is uniquely solvable on some
interval [0, T ′], where T ′ ≤ T. However, according to the a priori estimates established below,
we find that this solution Cn(t) continues to a finite time T.

Thus, we find functions Cn(t) = {cj(t), j = 1, ..., n} as a solution to the Cauchy problem
(26) for each fixed finite n, and together with them the only approximate solution wn(y, t)
to problem (24)–(25). Lemma 1 is completely proved.

6 A priori estimates

Lemma 2. There exists a positive constant K1 independent of n, such that for all t ∈ [0, T ]
the following estimate takes place

‖wn(y, t)‖2L2(0,1)
+
α1

b1
|wn(1, t)|2 +

α1

b0
|wn(0, t)|2 + β1

t∫
0

‖∂ywn(y, τ)‖2L2(0,1)
dτ ≤ K1. (27)

Proof. Multiplying (24) by cj(t), summing the result over j from 1 to n and using the
equality

1∫
0

wn(y, t)∂ywn(y, t)wn(y, t)dy =
1

3
w3
n(1, t)− 1

3
w3
n(0, t),
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we obtain

1

2

d

dt

1∫
0

|wn(y, t)|2dy + β(t)

1∫
0

|∂ywn(y, t)|2dy +
α(t)

2b1

d

dt
|wn(1, t)|2 +

α(t)

2b0

d

dt
|wn(0, t)|2

= −
1∫

0

γ(y, t)∂ywn(y, t)wn(y, t)dy +

1∫
0

g(y, t)wn(y, t)dy. (28)

First, note that due to property α′(t) ≤ 0 inequalities

t∫
0

α(t)

2b1

d

dt
|wn(1, t)|2 dt ≥ α1

2b1
|wn(1, t)|2,

t∫
0

α(t)

2b0

d

dt
|wn(0, t)|2 dt ≥ α1

2b0
|wn(0, t)|2

hold, which are obtained by integrating the left sides of the inequalities by parts.
Now, by integrating (28) with respect to t from 0 to t and using Cauchy inequality

−
1∫

0

γ(y, t)∂ywn(y, t)wn(y, t)dy ≤ β1
2
‖∂ywn(y, t)‖2L2(0,1)

+
γ21
2β1
‖wn(y, t)‖2L2(0,1)

,

1∫
0

g(y, t)wn(y, t)dy ≤ 1

2
‖g(y, t)‖2L2(0,1)

+
1

2
‖wn(y, t)‖2L2(0,1)

,

we get

‖wn(y, t)‖2L2(0,1)
+
α1

b1
|wn(1, t)|2 +

α1

b0
|wn(0, t)|2 + β1

t∫
0

‖∂ywn(y, τ)‖2L1(0,1)
dτ

≤
(
γ21
β1

+ 1

) t∫
0

‖wn(y, τ)‖2L2(0,1)
dτ +

T∫
0

‖g(y, τ)‖2L2(0,1)
dτ. (29)

From (29) follows

‖wn(y, t)‖2L2(0,1)
≤
(
γ21
β1

+ 1

) t∫
0

‖wn(y, τ)‖2L2(0,1)
dτ +

T∫
0

‖g(y, τ)‖2L2(0,1)
dτ.

By applying the Gronwall’s inequality, we obtain the estimate for ‖wn(y, t)‖2L2(0,1)
. By using

this estimate in (29), we establish the required estimate for Lemma 2.
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Lemma 3. For a positive constant K2 independent of n, for all t ∈ (0, T ] the following
inequality takes place:

‖∂ywn(y, t)‖2L2(0,1)
+

α1

b1β1

t∫
0

| d
dτ
wn(1, τ)|2dτ +

α1

b0β1

t∫
0

| d
dτ
wn(0, τ)|2dτ

+β1

t∫
0

‖∂2ywn(y, τ)‖2L2(0,1)
dτ ≤ K2. (30)

Proof. Taking into account equality

n∑
j=1

cjλ
2
jYj(y) = −

n∑
j=1

cj∂
2
yYj(y) = −∂2ywn(y, t),

which follows from (10) and (23), and multiplying equality (24) by cjλ
2
j and summing over j

from 1 to n, we obtain

1

2

d

d t
‖∂ywn(y, t)‖2L2(0,1)

+ β(t)‖∂2ywn(y, t)‖2L2(0,1)

= α(t)
(
wn(y, t)∂ywn(y, t), ∂2ywn(y, t)

)
+
(
γ(y, t)∂ywn(y, t), ∂2ywn(y, t)

)
−
(
g(y, t), ∂2ywn(y, t)

)
+
d

dt
wn(y, t)∂ywn(y, t)

∣∣∣y=1

y=0

≤ α2

∣∣∣(wn(y, t)∂ywn(y, t), ∂2ywn(y, t)
)∣∣∣+ γ1

∣∣(∂ywn(y, t), ∂2ywn(y, t)
)∣∣

+
∣∣(g(y, t), ∂2ywn(y, t)

)∣∣− α1

b1β(t)
| d
dt
wn(1, t)|2 +

α(t)

3β(t)
|wn(1, t)|2| d

dt
wn(1, t)|

− α1

b0β(t)
| d
dt
wn(0, t)|2 +

α(t)

3β(t)
|wn(0, t)|2| d

dt
wn(0, t)|,

or
1

2

d

d t
‖∂ywn(y, t)‖2L2(0,1)

+
α1

b1β2
| d
dt
wn(1, t)|2 +

α1

b0β2
| d
dt
wn(0, t)|2

+β1‖∂2ywn(y, t)‖2L2(0,1)
≤ α2

∣∣∣(wn(y, t)∂ywn(y, t), ∂2ywn(y, t)
)∣∣∣

+
α2

3β1
|wn(1, t)|2| d

dt
wn(1, t)|+ α2

3β1
|wn(0, t)|2| d

dt
wn(0, t)|

+γ1
∣∣(∂ywn(y, t), ∂2ywn(y, t)

)∣∣+
∣∣(g(y, t), ∂2ywn(y, t)

)∣∣ . (31)
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First, we consider the estimates of the nonlinear terms from (31). First of all, we have∣∣∣(wn(y, t)∂ywn(y, t), ∂2ywn(y, t)
)∣∣∣ ≤ ‖wn(y, t)‖L4(0,1)‖∂ywn(y, t)‖H1(0,1)‖∂ywn(y, t)‖L4(0,1)

≤ ‖wn(y, t)‖L4(0,1)‖∂ywn(y, t)‖H1(0,1)‖∂ywn(y, t)‖L∞(0,1). (32)

Further, taking into account the interpolation inequality from ([25], Theorems 5.8–5.9, p.140–
141)

α2‖∂ywn(y, t)‖L4(0,1) ≤ C‖∂ywn(y, t)‖1/2
H1(0,1)

‖∂ywn(y, t)‖1/2L2(0,1)
, ∀ ∂ywn(y, t) ∈ H1(0, 1),

from (32) we obtain

α2

∣∣∣(wn(y, t)∂ywn(y, t), ∂2ywn(y, t)
)∣∣∣

≤ C‖wn(y, t)‖L4(0,1)‖∂ywn(y, t)‖3/2
H1(0,1)

‖∂ywn(y, t)‖1/2L2(0,1)

≤ β1
8
‖∂2ywn(y, t)‖2L2(0,1)

+

[
β1
8

+ C2‖wn(y, t)‖4L4(0,1)

]
‖∂ywn(y, t)‖2L2(0,1)

. (33)

Here we have used Young’s inequality (p−1 + q−1 = 1) :

|AB| =
∣∣∣∣(a1/pA)(a1/qBa

)∣∣∣∣ ≤ a

p
|A|p +

a

qaq
|B|q , (34)

where

A = ‖∂ywn(y, t)‖3/2
H1(0,1)

, B = C ‖wn(y, t)‖L4(0,1)
‖∂ywn(y, t)‖1/2L2(0,1)

, a =
β1
6
, p =

4

3
, q = 4.

Note that for two nonlinear terms on the right-hand side of (31) the following estimates
hold:

α2

3β1
|wn(1, t)|2| d

dt
wn(1, t)| ≤ b1α

2
2

18β1α1
|wn(1, t)|4 +

α1

2b1β1
| d
dt
wn(1, t)|2

≤ K2
1

b1α
2
2

18β1α1
+

α1

2b1β1
| d
dt
wn(1, t)|2, (35)

α2

3β1
|wn(0, t)|2| d

dt
wn(0, t)| ≤ b0α

2
2

18β1α1
|wn(0, t)|4 +

α1

2b0β1
| d
dt
wn(0, t)|2

≤ K2
1

b0α
2
2

18β1α1
+

α1

2b0β1
| d
dt
wn(0, t)|2. (36)

In inequalities (35)–(36) estimate (27) from Lemma 2 is used.
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Further, for the last two terms from (31) we will have:

γ1

∣∣∣(∂ywn(y, t), ∂2ywn(y, t)
)∣∣∣ ≤ β1

8
‖∂2ywn(y, t)‖2L2(0,1)

+ C3‖∂ywn(y, t)‖2L2(0,1)
, (37)

∣∣(g(y, t), ∂2ywn(y, t)
)∣∣ ≤ β1

4
‖∂2ywn(y, t)‖2L2(0,1)

+ C4‖g(y, t)‖2L2(0,1)
. (38)

From (31), (33)–(38) we obtain

d

d t
‖∂ywn(y, t)‖2L2(0,1)

+
α1

b1β1
| d
dt
wn(1, t)|2 +

α1

b0β1
| d
dt
wn(0, t)|2 + β1‖∂2ywn(y, t)‖2L2(0,1)

≤ 2C4‖g(y, t)‖2L2(0,1)
+

[
β1
4

+ 2C2‖wn(y, t)‖4L4(0,1)
+ 2C3

]
‖∂ywn(y, t)‖2L2(0,1)

+K0, (39)

where

K0 = K2
1

b1α
2
2

9β1α1
+K2

1

b1α
2
2

9β1α1
, K1 is the constant from Lemma 2,

or, by integrating (39) with respect to t from 0 to t, we will have

‖∂ywn(y, t)‖2L2(0,1)
+

α1

b1β1

t∫
0

| d
dτ
wn(1, τ)|2dτ +

α1

b0β1

t∫
0

| d
dτ
wn(0, τ)|2dτ

+β1

t∫
0

‖∂2ywn(y, τ)‖2L2(0,1)
dτ ≤ A4‖g(y, t)‖2L2(Q)+

t∫
0

A5(τ)‖∂ywn(y, τ)‖2L2(0,1)
dτ+K0T, (40)

where

A4 = 2C4, A5(t) =
β1
4

+ 2C2‖wn(y, t)‖4L4(0,1)
+ 2C3.

From inequality (40) in the same way as in the proof of Lemma 2 we obtain the desired
estimate (30). Lemma 3 is completely proved.

Lemma 4. For positive constants K3,K4 and K5 independent of n, for all t ∈ (0, T ] the
following inequalities hold:

‖∂twn(y, t)‖2L2(Qyt)
≤ K3, (41)

‖ d
dt
wn(1, t)‖2L2(0,T )

≤ K4, (42)

‖ d
dt
wn(0, t)‖2L2(0,T )

≤ K5. (43)
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Proof. Let us write down initial boundary value problem (5)–(8) for the approximate solution
wn(y, t):

∂twn + α(t)wn∂yw − β(t)∂2ywn + γ(y, t)∂ywn = g, (44)

d

dt
wn(0, t) +

b0
α(t)

[
α(t)

3
w2
n − β(t)∂ywn

] ∣∣
y=0

= 0, (45)

d

dt
wn(1, t)− b1

α(t)

[
α(t)

3
w2
n − β(t)∂ywn

] ∣∣
y=1

= 0, 0 < t < T, (46)

wn(y, 0) = 0, 0 < y < 1. (47)

From the equation and boundary conditions (44)–(47) respectively, we obtain

‖∂twn‖L2(Qyt) ≤ α
2
2‖wn∂ywn‖L2(Qyt) +β2‖∂2ywn‖L2(Qyt) +γ1‖∂ywn‖L2(Qyt) +‖g‖L2(Qyt), (48)

‖ d
dt
wn‖L2(0,T ) ≤

b0α2

3α1
‖wn(0, t)‖1/2L4(0,T )

+
b0β2
α1
‖∂ywn(0, t)‖L2(0,T ), (49)

‖ d
dt
wn‖L2(0,T ) ≤

b1α2

3α1
‖wn(1, t)‖1/2L4(0,T )

+
b1β2
α1
‖∂ywn(1, t)‖L2(0,T ). (50)

According to embedding H1(0, 1) ↪→ L∞(0, 1) inequality ‖wn‖L∞(0,1) ≤ C‖wn‖H1(0,1)

holds. Hence, taking into account Lemmas 2 and 3, we obtain

‖wn∂ywn‖L2(Qyt) ≤ C‖wn‖L∞(0,T ;H1(0,1))‖∂ywn‖L2(Qyt). (51)

Estimate (41) follows from (48), (51) and from the statements of Lemmas 2 and 3. Estimates
(42)–(43) follow, respectively, from (49)–(50) and the statements of Lemmas 2 and 3. Lemma
4 is completely proved.

7 Unique solvability of the first auxiliary problem (5)–(8)

Lemmas 2–4 show that the sequences of Galerkin approximations

{wn(y, t), wn(1, t), wn(0, t), n = 1, 2, 3, ...}

are bounded in the direct product of spaces

L∞(0, T ;H1(0, 1)) ∩ L2(0, T ;H2(0, 1))× L∞(0, T )× L∞(0, T ),

and the sequences

{∂twn(y, t),
d

dt
wn(1, t),

d

dt
wn(0, y), n = 1, 2, 3, ...}
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are bounded in
L2(0, T ;L2(0, 1))× L2(0, T )× L2(0, T ),

respectively.
Thus, we can extract weakly convergent subsequences (we preserve the notation of the

index n for the subsequences):

wn(y, t)→ w(y, t) weakly in L2(0, T ;H2(0, 1)) ∩H1(0, T ;L2(0, 1)), (52)

wn(y, t)→ w(y, t) strongly in L2(0, T ;L2(0, 1)) and almost everywhere in Qyt, (53)

{wn(1, t), wn(0, t)} → {w(1, t), w(0, t)} weakly H1(0, T )×H1(0, T ), (54)

{wn(1, t), wn(0, t)} → {w(1, t), w(0, t)} strongly in L2(0, T )× L2(0, T ). (55)

Lemma 5. Let conditions (9) be satisfied and g ∈ L2(Qyt). Then initial boundary value
problem (5)–(8) has a weak solution in space H2,1(Qyt).

Proof. Let ϕ(t) ∈ D((0, T )), i.e. from the class of infinitely differentiable finite functions.
We introduce the notation vj(y, t) = ϕ(t)Yj(y), where Yj(y) ∈ H1(0, 1). Now, multiplying
integral identity (24) by the function ϕ(t) ∈ D((0, T )) and integrating the result obtained
with respect to t from 0 to T , we obtain

T∫
0

1∫
0

[
∂twn + α(t)wn∂ywn − β(t)∂2ywn + γ(y, t)∂ywn

]
vj dy dt

+

T∫
0

[
β(t)∂ywn(1, t) +

α(t)

b1

d

dt
wn(1, t)− α(t)

3
w2
n(1, t)

]
vj(1, t) dt

+

T∫
0

[
−β(t)∂ywn(0, t) +

α(t)

b0

d

dt
wn(0, t) +

α(t)

3
w2
n(0, t)

]
vj(0, t) dt

=

T∫
0

1∫
0

gvj dy dt, ∀ϕ(t) ∈ D((0, T )), ∀ j = 1, ..., n. (56)

Since D((0, T );H1(0, 1)) is dense in L2(0, T ;H1(0, 1)), then integral identity (56) can be
rewritten as

T∫
0

1∫
0

[
∂twn + α(t)wn∂ywn − β(t)∂2ywn + γ(y, t)∂ywn

]
v dy dt
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+

T∫
0

[
β(t)∂ywn(1, t) +

α(t)

b1

d

dt
wn(1, t)− α(t)

3
w2
n(1, t)

]
v(1, t) dt

+

T∫
0

[
−β(t)∂ywn(0, t) +

α(t)

b0

d

dt
wn(0, t) +

α(t)

3
w2
n(0, t)

]
v(0, t) dt

=

T∫
0

1∫
0

gv dy dt, ∀ v(y, t) ∈ L2(0, T ;H1(0, 1)). (57)

In integral identity (57) we pass to the limit as n→∞. In the expressions corresponding
to the linear terms of equation (5) and boundary conditions (6)–(7), passing to the limit is
carried out according to relations (52) and (54). As for the nonlinear terms, here we have
the following:

T∫
0

1∫
0

α(t)wn(y, t)∂ywn(y, t)v(y, t) dy dt =

T∫
0

α(t)

1∫
0

[wn(y, t)− w(y, t)]∂ywn(y, t)v(y, t) dy dt

+

T∫
0

α(t)

1∫
0

w(y, t)∂ywn(y, t)v(y, t) dy dt→
T∫
0

α(t)

1∫
0

w(y, t)∂yw(y, t)v(y, t) dy dt, (58)

since according to (53) and (52) the following limit relation holds

T∫
0

α(t)

1∫
0

[wn(y, t)− w(y, t)]∂ywn(y, t)v(y, t) dy dt→ 0.

Further, according to (55) and (54), similarly to the previous one, we will have

T∫
0

wn(1, t)wn(1, t)v(1, t) dt =

T∫
0

[wn(1, t)− w(1, t)]wn(1, t)v(1, t) dt

+

T∫
0

w(1, t)wn(1, t)v(1, t)dt→
T∫
0

w2(1, t)v(1, t) dt, (59)

T∫
0

wn(0, t)wn(0, t)v(0, t)dt =

T∫
0

[wn(0, t)− w(0, t)]wn(0, t)v(0, t) dt
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+

T∫
0

w(0, t)wn(0, t)v(0, t)dt→
T∫
0

w2(0, t)v(0, t) dt. (60)

So, passing to the limit at n → ∞ in integral identity (57), taking into account limit
relations (58)–(60), as well as in initial condition (25), we get

T∫
0

1∫
0

[
∂tw + α(t)w∂yw − β(t)∂2yw + γ(y, t)∂yw

]
v dy dt

+

T∫
0

[
β(t)∂yw(1, t) +

α(t)

b1

d

dt
w(1, t)− α(t)

3
w2(1, t)

]
v(1, t) dt

+

T∫
0

[
−β(t)∂yw(0, t) +

α(t)

b0

d

dt
w(0, t) +

α(t)

3
w2(0, t)

]
v(0, t) dt

=

T∫
0

1∫
0

gv dy dt, ∀ v(y, t) ∈ L2(0, T ;H1(0, 1)). (61)

1∫
0

w(y, 0)ψ(y) dy = 0, ∀ψ ∈ L2(0, 1). (62)

Note that integral identity (61) is also valid for any test function v(y, t) ∈
L2(0, T ;H1

0 (0, 1)) ⊂ L2(0, T ;H1(0, 1)).
Further, returning to (61) and taking into account that traces v(1, t) and v(0, t) from

L2(0, T ) of test function v ∈ L2(0, T ;H1(0, 1)) are independent of each other and are arbi-
trary, in this case identities

T∫
0

1∫
0

[
∂tw + α(t)w∂yw − β(t)∂2yw + γ(y, t)∂yw − g

]
v dy dt = 0, ∀ v(y, t) ∈ L2(0, T ;H1

0 (0, 1)),

(63)
T∫
0

[
β(t)∂yw(1, t) +

α(t)

b1

d

dt
w(1, t)− α(t)

3
w2(1, t)

]
ψ1(t) dt = 0, ∀ψ1(t) ∈ L2(0, T ), (64)

T∫
0

[
−β(t)∂yw(0, t) +

α(t)

b0

d

dt
w(0, t) +

α(t)

3
w2(0, t)

]
ψ0(t) dt = 0, ∀ψ0(t) ∈ L2(0, T ), (65)
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follow from (57), that is, the integrands in square brackets from (63)–(65) define zero function-
als over spaces L2(0, T ;H1

0 (0, 1)) and L2(0, T ), and belong to spaces 0 ∈ L2(0, T ;H−1(0, 1)) ⊂
D′(Qyt) and 0 ∈ L2(0, T ) ⊂ D′((0, T )). Thus, from (63)–(65) we obtain that the weak limit
function w(y, t) satisfies equation (5) and boundary conditions (6)–(7), and from (62) it
follows that it satisfies initial condition (8). This completes the proof of Lemma 5.

Lemma 6. Under the conditions of Lemma 5 the solution w ∈ H2,1(Qyt) of initial boundary
value problem (5)–(8) is unique.

Proof. Let boundary value problem (5)–(8) have two different solutions w(1)(y, t) and
w(2)(y, t). Then their difference w(y, t) = w(1)(y, t) − w(2)(y, t) will satisfy the following
homogeneous problem:

∂ tw + α(t)w∂yw
(1) + α(t)w(2)∂yw − β(t)∂2yw = 0, (66)

d

dt
w(0, t) +

b0
α(t)

[
α(t)

3
w
(
w(1) + w(2)

)
− β(t)∂yw

] ∣∣
y=0

= 0, (67)

d

dt
w(1, t)− b1

α(t)

[
α(t)

3
w
(
w(1) + w(2)

)
− β(t)∂yw

] ∣∣
y=1

= 0. (68)

According to Lemmas 2 and 3 we have

w(i)(y, t) ∈ L∞(0, T ;H1(0, 1)) ∩ L2(0, T ;H2(0, 1)),

w(i)(1, t) and w(i)(0, t) ∈ L∞(0, T ), i = 1, 2. (69)

Multiplying equation (66) by function w(y, t) scalarly in L2(0, 1) and taking into account
(67)–(69), we obtain

1

2

d

d t
‖w(y, t)‖2L2(0,1)

+
α1

2b1

d

dt
|w(1, t)|2 +

α1

2b0

d

dt
|w(0, t)|2

+β1 ‖∂yw(y, t)‖2L2(0,1)
≤ α(t)

3
|w(1, t)|2

[
w(1)(1, t) + w(2)(1, t)

]
+
α(t)

3
|w(0, t)|2

[
w(1)(0, t) + w(2)(0, t)

]
− α(t)

1∫
0

[
w2∂yw

(1) + w(2)w∂yw
]
dy. (70)

Now we estimate the right-hand side of (70). According to (69) and by Lemma 2 we have:

α(t)

3

[
w(1)(1, t) + w(2)(1, t)

]
|w(1, t)|2

≤ α2

3

[
‖w(1)(1, t)‖L∞(0,T ) + ‖w(2)(1, t)‖L∞(0,T )

]
|w(1, t)|2 ≤ C1|w(1, t)|2, (71)
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α(t)

3

[
w(1)(0, t) + w(2)(0, t)

]
|w(0, t)|2

≤ α2

3

[
‖w(1)(0, t)‖L∞(0,T ) + ‖w(2)(0, t)‖L∞(0,T )

]
|w(0, t)|2 ≤ C2|w(0, t)|2, (72)

α(t)

1∫
0

[
w2∂yw

(1) + w(2)w∂yw
]
dy = α(t)

[
|w(1, t)|2w(1)(1, t)− |w(0, t)|2w(1)(0, t)

]

+α(t)

1∫
0

[
−2w(1)w∂yw + w(2)w∂yw

]
dy ≤ C3|w(1, t)|2 + C4|w(0, t)|2

+
α2
2

β1

[
2‖w(1)‖L∞(Qyt) + ‖w(2)‖L∞(Qyt)

]2
‖w‖2L2(0,1)

+
β1
2
‖∂yw‖2L2(0,1)

≤ C3|w(1, t)|2 + C4|w(0, t)|2 + C5‖w(y, t)‖2L2(0,1)
+
β1
2
‖∂yw‖2L2(0,1)

. (73)

Based on relations (70)–(73) we establish

d

d t
‖w(y, t)‖2L2(0,1)

+
α1

b1

d

dt
|w(1, t)|2 +

α1

b0

d

dt
|w(0, t)|2 + β1 ‖∂yw(y, t)‖2L2(0,1)

≤ 2(C1 + C3)|w(1, t)|2 + 2(C2 + C4)|w(0, t)|2 + 2C5‖w(y, t)‖2L2(0,1)
, ∀ t ∈ (0, T ].

Hence, applying Gronwall’s inequality, we obtain:

‖w(y, t)‖2L2(0,1)
+ |w(1, t)|2 + |w(0, t)|2 ≡ 0, ∀ t ∈ (0, T ].

This means that w(1)(y, t) ≡ w(2)(y, t) in L2(Qyt), w
(1)(1, t) ≡ w(2)(1, t) and w(1)(0, t) ≡

w(2)(0, t) in L2(0, T ), i.e. the solution to initial boundary value problem (5)–(8) can be only
one. Lemma 6 is completely proved.

Thus, the statement of Lemmas 5 and 6 implies the validity of Theorem 2. Theorem 2 is
completely proved. Theorem 2 will also be used in the following sections to solve Problem 1,
i.e. in the proof of Theorem 1.

8 The second auxiliary initial boundary value problem

In the domain Qxt = {x, t | 0 < x < t0 +kt, 0 < t < T, t0 > 0}, we consider the following
initial boundary value problem

∂ tu+ u∂xu− ν∂2xu = f, (74)

d

dt
u(0, t) + b0

[
1

3
(u)2 − ν∂xu

] ∣∣
x=0

= 0, (75)
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d

dt
u(t0 + kt, t)− b1

[
1

3
(u)2 − ν∂xu

] ∣∣
x=t0+kt

= 0, (76)

with initial condition

u(x, 0) = 0, x ∈ (0, t0), (77)

where ν, b0, b1 are given positive constants, and the function f(x, t) satisfy condition

f ∈ L2(Qxt). (78)

Problem 2. Prove the unique solvability of initial boundary value problem (74)–(77) under
condition (78).

Using the reversible transformation of independent variables

y = y(x, t) =
x

t0 + kt
, t = t; x = x(y, t) = y(t0 + kt), t = t;

we move from {x, t} to {y, t}. In this case, the domain Qxt is transformed into a rectangular
domain Qyt = {y, t : 0 < y < 1, 0 < t < T}. Problem 2 takes the following form:

∂ tw +
1

t0 + kt
w∂yw −

ν

(t0 + kt)2
∂2yw −

ky

t0 + kt
∂yw = g(y, t), (79)

d

dt
w(0, t) + b0

[
1

3
(w)2 − ν

t0 + kt
∂yw

] ∣∣
y=0

= 0, (80)

d

dt
w(1, t)− b1

[
1

3
(w)2 − ν

t0 + kt
∂yw

] ∣∣
y=1

= 0, (81)

with the initial condition

w(y, 0) = 0, y ∈ (0, 1), (82)

where w(y, t) = u(x(y, t), t), g(y, t) = f(x(y, t), t).

Initial boundary value problem (79)–(82) is a particular case of the first auxiliary problem
(5)–(8), where

α(t) =
1

t0 + kt
, β(t) =

ν

(t0 + kt)2
, γ(y, t) =

ky

t0 + kt
,

and conditions (9) are provided. Therefore, as a consequence of Theorem 2 we obtain

Theorem 3. Let condition (78) be satisfied and g ∈ L2(Qyt). Then initial boundary value
problem (79)–(82) is uniquely solvable in space

{w(y, t), w(1, t), w(0, t)} ∈ H2,1(Qyt)×H1(0, T )×H1(0, T ).
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Further, taking into account the correspondence of spaces in domains Qxt and Qyt:

g ∈ L2(Qyt)⇐⇒ f ∈ L2(Qxt),

w ∈ H2,1(Qyt) = L2(0, T ;H2(0, 1)) ∩H1(0, T ;L2(0, 1))⇐⇒ u ∈ H2,1(Qxt)

= L2(0, T ;H2(0, t0 + kt)) ∩H1(0, T ;L2(0, t0 + kt)),

w(1, t) ∈ H1(0, T )⇐⇒ u(t0 + kt, t) ∈ H1(0, T ),

w(0, t) ∈ H1(0, T )⇐⇒ u(0, t) ∈ H1(0, T ),

we establish the following statement

Theorem 4. Let condition (78) be satisfied and f ∈ L2(Qxt). Then initial boundary value
problem (74)–(77) is uniquely solvable in space

{u(x, t), u(t0 + kt, t), u(0, t)} ∈ H2,1(Qxt)×H1(0, T )×H1(0, T ).

9 To solving Problem 1

To the domain Qxt = {x, t | 0 < x < kt, 0 < t < T} from Section 2 we will put a family
of domains Qnxt = {x, t | 0 < x < kt, 1/n < t < T}, n ∈ N∗ ≡ {n ∈ N | n ≥ n1, 1/n1 < T},
representing the trapezoids, and Ωt is a section of Qnxt for a given value of the variable
t ∈ (1/n, T ). Note that at the point t = 1/n the domain Qnxt no longer degenerates to a
point, in addition, between the original domain Qxt and the domains Qnxt the strict inclusions
Qnxt ⊂ Qn+1

xt ⊂ ... ⊂ Qxt take place and, it is obvious, that lim
n→∞

Qnxt = Qxt.

On the trapezoid Qnxt we consider the following boundary value problems for the Burgers
equation with respect to the functions un(x, t):

∂ tun + un∂xun − ν∂2xun = fn, (83)

d

dt
un(0, t) + b0

[
1

3
(un)2 − ν∂xun

] ∣∣
x=0

= 0, (84)

d

dt
un(kt, t)− b1

[
1

3
(u1n)2 − ν∂xun

] ∣∣
x=kt

= 0, (85)

with initial conditions

un(x, 1/n) = 0, x ∈ (0, k/n). (86)

For each fixed n ∈ N∗, initial boundary value problems (83)–(86) are problems of the form
(74)–(77) under condition (78), for which Theorem 4 is valid. From Theorem 4 we obtain
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Theorem 5. Let fn ∈ L2(Q
n
xt). Then, for each fixed n ∈ N∗ initial boundary value problems

(83)–(86) are uniquely solvable in the space

{un(x, t), un(kt, t), un(0, t)} ∈ H2,1(Qnxt)×H1(1/n, T )×H1(1/n, T ).

To continue the proof of Theorem 1 we need the following statement:

Theorem 6. Under the conditions of Theorems 1 and 5 the following estimate holds

‖un(x, t)‖2H2,1(Qn
xt)

+ ‖un(kt, t)‖2H1(1/n,T ) + ‖un(0, t)‖2H1(1/n,T ) ≤ C‖fn(x, t)‖2L2(Qn
xt)
. (87)

To prove Theorem 6 we will establish a number of lemmas.

Lemma 7. There exists a positive constant K1 independent of n, such that for all t ∈ [1/n, T ]
the following estimate takes place

‖un(x, t)‖2L2(0,kt)
+ |un(kt, t)|2 + |un(0, t)|2 +

t∫
1/n

‖∂xun(x, τ)‖2L2(0,kt)
dτ ≤ K1‖fn(x, t)‖2L2(Qn

xt)
.

(88)

Proof. Multiplying equation (83) by un(x, t) scalarly in L2(0, kt) and using the following
equalities

kt∫
0

un(x, t)∂xun(x, t)un(x, t)dx =
1

3
u3n(kt, t)− 1

3
u3n(0, t),

d

d t
‖un(x, t)‖2L2(0,kt)

= 2

kt∫
0

∂tun(x, t)un(x, t) dx+ k|un(kt, t)|2,

we get

1

2

d

dt

kt∫
0

|un(x, t)|2dx+
1

2b1

d

dt
|un(kt, t)|2 +

1

2b0

d

dt
|un(0, t)|2

+ν

kt∫
0

|∂xun(x, t)|2dx =

kt∫
0

fn(x, t)un(x, t)dx+
k

2
|un(kt, t)|2,

or
dθ(t)

dt
+ 2ν‖∂xun(x, t)‖2L2(0,kt)

≤ K0

[
‖fn(x, t)‖2L2(0,kt)

+ θ(t)
]
,
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where

θ(t) = ‖un(x, t)‖2L2(0,kt)
+

1

b1
|un(kt, t)|2 +

1

b0
|un(0, t)|2, K0 = const > 0.

Note that K0 does not depend on n.

From this we obtain two inequalities

d θ(t)

dt
≤ K0

[
‖fn(x, t)‖2L2(0,kt)

+ θ(t)
]
, θ(0) = 0, (89)

2ν‖∂xun(x, t)‖2L2(0,kt)
≤ K0

[
‖fn(x, t)‖2L2(0,kt)

+ ‖un(x, t)‖2L2(0,kt)

]
. (90)

Finally, applying Gronwall’s inequality from (89)–(90), we obtain estimate (88). This
completes the proof of Lemma 7.

Lemma 8. There exists a positive constant K2 independent of n, such that for all t ∈ [1/n, T ]
the following estimate takes place

‖∂xun(x, t)‖2L2(0,kt)
+

t∫
1/n

[
| d
dτ
un(kτ, τ)|2 + | d

dτ
un(0, τ)|2

]
dτ

+|∂xun(kt, t)|2 +

t∫
1/n

‖∂2xun(x, τ)‖2L2(0,kt)
dτ ≤ K2‖fn(x, t)‖2L2(Qn

xt)
. (91)

Proof. Multiplying equation (83) by −∂2xun(x, t) scalarly in L2(0, kt) and using the following
equality:

d

d t
‖∂xun(x, t)‖2L2(0,kt)

= 2

kt∫
0

∂t∂xun(x, t) ∂xun(x, t) dx+ k|∂xun(kt, t)|2,

we obtain
1

2

d

d t
‖∂xun(x, t)‖2L2(0,kt)

+ ν‖∂2xun(x, t)‖2L2(0,kt)

=
(
un(x, t)∂xun(x, t), ∂2xun(x, t)

)
−(

fn(x, t), ∂2xun(x, t)
)

+ ∂tun(x, t)∂xun(x, t)
∣∣∣x=kt
x=0

+
k

2
|∂xun(kt, t)|2

≤
∣∣(un(x, t)∂xun(x, t), ∂2xun(x, t)

)∣∣+
∣∣(fn(x, t), ∂2xun(x, t)

)∣∣
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− 1

b1ν

∣∣∣∣ ddtun(kt, t)

∣∣∣∣2 +
1

3ν
|un(kt, t)|2|∂tun(kt, t)| − k|∂xun(kt, t)|2

− 1

b0ν

∣∣∣∣ ddtun(0, t)

∣∣∣∣2 +
1

3ν
|un(0, t)|2| d

dt
un(0, t)|+ k

2
|∂xun(kt, t)|2,

or
1

2

d

d t
‖∂xun(x, t)‖2L2(0,kt)

+
1

b1ν

∣∣∣∣ ddtun(kt, t)

∣∣∣∣2 +
1

b0ν

∣∣∣∣ ddtun(0, t)

∣∣∣∣2
+
k

2
|∂xun(kt, t)|2 + ν‖∂2xun(x, t)‖2L2(0,kt)

≤
∣∣(un(x, t)∂xun(x, t), ∂2xun(x, t)

)∣∣
+

1

3ν
|un(kt, t)|2|∂tun(kt, t)|+ 1

3ν
|un(0, t)|2|∂tun(0, t)|+

∣∣(fn(x, t), ∂2xun(x, t)
)∣∣ . (92)

First, we consider the estimates of the nonlinear terms from (92). First of all, we have∣∣(un(x, t)∂xun(x, t), ∂2xun(x, t)
)∣∣

≤ ‖un(x, t)‖L4(0,kt)‖∂xun(x, t)‖H1(0,kt)‖∂xun(x, t)‖L4(0,kt)

≤ ‖un(x, t)‖L4(0,kt)‖∂xun(x, t)‖H1(0,kt)‖∂xun(x, t)‖L∞(0,kt). (93)

Further, taking into account the interpolation inequality from ([25], Theorems 5.8–5.9, p.140–
141)

‖∂xun(x, t)‖L4(0,kt) ≤ C‖∂xun(x, t)‖1/2
H1(0,kt)

‖∂xun(x, t)‖1/2L2(0,kt)
, ∀ ∂yun(x, t) ∈ H1(0, kt),

from (93) we obtain ∣∣(un(x, t)∂xun(x, t), ∂2xun(x, t)
)∣∣

≤ C‖un(x, t)‖L4(0,kt)‖∂xun(x, t)‖3/2
H1(0,kt)

‖∂xun(x, t)‖1/2L2(0,kt)

≤ ν

8
‖∂2xun(x, t)‖2L2(0,kt)

+
[ν

8
+ C2‖un(x, t)‖4L4(0,kt)

]
‖∂xun(x, t)‖2L2(0,kt)

. (94)

Here we have used Young’s inequality (34), where a = ν/6, p = 4/3, q = 4,

A = ‖∂xun(x, t)‖3/2
H1(0,kt)

, B = C ‖un(x, t)‖L4(0,kt)
‖∂xun(x, t)‖1/2L2(0,kt)

.

Note that for two nonlinear terms on the right-hand side of (92) the following estimates
hold:

1

3ν
|un(kt, t)|2|∂tun(kt, t)| ≤ b1

18ν
|un(kt, t)|4 +

1

2b1ν
|∂tun(kt, t)|2

≤ K2
1

b1
18ν

+
1

2b1ν
|∂tun(kt, t)|2 ≤ K2

1

b1
18ν

+
1

b1ν
| d
dt
un(kt, t)|2 +

k2

b1ν
|∂xun(kt, t)|2, (95)
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1

3ν
|un(0, t)|2|∂tun(0, t)| ≤ b0

18ν
|un(0, t)|4 +

1

2b0ν
|∂tun(0, t)|2

≤ K2
1

b0
18ν

+
1

2b0ν
|∂tun(0, t)|2 = K2

1

b0
18ν

+
1

2b0ν
| d
dt
un(0, t)|2. (96)

In inequalities (95)–(96), estimate (88) from Lemma 7 is used.

In (95), it is necessary to estimate the last term on the right. Taking into account the
interpolation inequality from ([25], Theorem 5.9, p.140–141), we get

k2

b1ν
|∂xun(kt, t)|2 ≤ k2

b1ν
‖∂xun(x, t)‖2L∞(0,kt) ≤

k2K2

b1ν
‖∂xun‖H1(0,kt)‖∂xun‖L2(0,kt)

≤ 2k2K2

b1ν

[
‖∂xun‖L2(0,kt) + ‖∂2xun‖L2(0,kt)

]
‖∂xun‖L2(0,kt)

=
2k2K2

b1ν
‖∂xun‖2L2(0,kt)

+
2k2K2

b1ν
‖∂2xun‖L2(0,kt)‖∂xun‖L2(0,kt)

≤ ν

8
‖∂2xun‖2L2(0,kt)

+

[
2k2K2

b1ν
+

32k4K4

b21ν
3

]
‖∂xun‖2L2(0,kt)

, (97)

where K is a constant from Theorem 5.9, p.140–141 [25].

Further, for the last term from (92) we will have:∣∣(fn(x, t), ∂2xun(x, t)
)∣∣ ≤ ν

4
‖∂2xun(x, t)‖2L2(0,kt)

+ C4‖fn(x, t)‖2L2(0,kt)
. (98)

From (92), (94)–(98) we obtain

d

d t
‖∂xun(x, t)‖2L2(0,kt)

+
1

b1ν

∣∣∣∣ ddtun(kt, t)

∣∣∣∣2 +
1

b0ν

∣∣∣∣ ddtun(0, t)

∣∣∣∣2 + ν‖∂2xun(x, t)‖2L2(0,kt)

≤ 2C4‖fn(x, t)‖2L2(0,kt)
+ C5(t)‖∂xun(x, t)‖2L2(0,kt)

+K0, (99)

where

C5(t) =
ν

4
+ 2C2‖un(x, t)‖4L4(0,kt)

+
4k2K2

b1ν
+

64k4K4

b21ν
3
, K0 = K2

1

b0
9ν

+K2
1

b1
9ν
,

or, by integrating (99) with respect to t from 1/n to t, we will have

‖∂xun(x, t)‖2L2(0,kt)
+

1

b1ν

t∫
1/n

∣∣∣∣ ddτ un(kt, τ)

∣∣∣∣2 dτ +
1

b0ν

t∫
1/n

∣∣∣∣ ddτ un(0, τ)

∣∣∣∣2 dτ
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+ν

t∫
1/n

‖∂2xun(x, τ)‖2L2(0,kt)
dτ ≤ A4‖fn(x, t)‖2L2(Qn

xt)
+

t∫
1/n

A5(τ)‖∂xun(x, τ)‖2L2(0,kt)
dτ +K0T,

(100)
where A4 = 2C4.

From inequality (100) in the same way as in the proof of Lemma 7 we obtain desired
estimate (91). Lemma 8 is completely proved.

Lemma 9. There exists a positive constant K3 independent of n, such that the following
estimate takes place

‖∂tun(x, t)‖2L2(Qn
xt)

+ ν2‖∂2xun(x, t)‖2L2(Qn
xt)
≤ K3‖fn(x, t)‖2L2(Qn

xt)
. (101)

Proof. From equation (83) we will have

‖fn‖2L2(Qn
xt)

=
(
∂ tun + un∂xun − ν∂2xun, ∂ tun + un∂xun − ν∂2xun

)
L2(Qn

xt)

= ‖∂ tun‖2L2(Qn
xt)

+ ν2‖∂2xun‖2L2(Qn
xt)

+ ‖un∂xun‖2L2(Qn
xt)

−2ν
(
∂ tun, ∂

2
xun
)
L2(Qn

xt)
+ 2ν (∂ tun, un∂xun)L2(Qn

xt)
− 2ν

(
un∂xun, ∂

2
xun
)
L2(Qn

xt)
,

or
‖∂ tun‖2L2(Qn

xt)
+ ν2‖∂2xun‖2L2(Qn

xt)
= ‖fn‖2L2(Qn

xt)
− ‖un∂xun‖2L2(Qn

xt)

+2ν
(
un∂xun, ∂

2
xun
)
L2(Qn

xt)
− 2 (∂ tun, un∂xun)L2(Qn

xt)
+ 2ν

(
∂ tun, ∂

2
xun
)
L2(Qn

xt)
. (102)

We estimate two terms from (102), by using the Cauchy’s inequality:∣∣∣−2 (∂ tun, un∂xun)L2(Qn
xt)

∣∣∣ ≤ 1

2
‖∂ tun‖2L2(Qn

xt)
+ 2‖un∂xun‖2L2(Qn

xt)
, (103)

∣∣∣2ν (un∂xun, ∂2xun)L2(Qn
xt)

∣∣∣ ≤ 4‖un∂xun‖2L2(Qn
xt)

+
ν2

4
‖∂2xun‖2L2(Qn

xt)
. (104)

Now, for the last term from (102) we have:

(
∂ tun, ∂

2
xun
)
L2(Qn

xt)
= −

T∫
1/n

kt∫
0

∂ t (∂xun) ∂xun dx dt+

T∫
1/n

[∂ tun∂xun]
∣∣∣x=kt
x=0

dt

= −1

2

kt∫
0

(∂xun(x, T ))2 dx+

T∫
1/n

∂ tun(kt, t)∂xun(kt, t) dt−
T∫

1/n

∂ tun(0, t)∂xun(0, t) dt.
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Since from boundary conditions (84)–(85) we have

∂ tun(kt, t) = b1

[
1

3
(un(kt, t))2 − ν∂xun(kt, t)

]
− k∂xun(kt, t),

d

dt
un(0, t) = ∂ tun(0, t) = −b0

[
1

3
(un(0, t))2 − ν∂xun(0, t)

]
,

then (
∂ tun, ∂

2
xun
)
L2(Qn

xt)
= −1

2

kt∫
0

|∂xun(x, T )|2 dx

+
b1
3

T∫
1/n

|un(kt, t)|2∂xun(kt, t) dt− (b1ν + k)

T∫
1/n

|∂xun(kt, t)|2 dt

+
b0
3

T∫
1/n

|un(0, t)|2∂xun(0, t) dt− b0ν
T∫

1/n

|∂xun(0, t)|2 dt,

and the following inequality holds

2ν
(
∂ tun, ∂

2
xun
)
L2(Qn

xt)
≤ 2b1ν

3

T∫
1/n

un(kt, t)∂xun(kt, t) dt+
2b0ν

3

T∫
1/n

un(0, t)∂xun(0, t) dt.

(105)

We need the norm of the operator of the following embedding of the Sobolev space in
the space of continuous functions: H1(0, kt) ↪→ C([0, kt]), i.e. there exists a number B
independent of v(x), such that

‖v(x)‖C([0,kt]) ≤ B‖v(x)‖H1(0,kt), ∀ v(x) ∈ H1(0, kt), ∀ t ∈ [1/n, T ]. (106)

Let us estimate the terms on the right-hand side of inequality (105). We have

T∫
1/n

un(kt, t)∂xun(kt, t) dt ≤ C1(ε1)‖un(kt, t)‖2L2(1/n,T )
+ ε1‖∂xun(kt, t)‖2L2(1/n,T )

, (107)

T∫
1/n

un(0, t)∂xun(0, t) dt ≤ C0(ε0)‖un(0, t)‖2L2(1/n,T )
+ ε0‖∂xun(0, t)‖2L2(1/n,T )

, (108)
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where 2
√
ε0C0(ε0) = 1, 2

√
ε1C1(ε1) = 1.

Now, taking into account (106) and choosing ε0 > 0 and ε1 > 0 so that equality 8B2

3 (b0ε0+
b1ε1) = ν holds, from (102)–(105) we obtain the estimate

‖∂tun‖2L2(Qn
xt)

+ ν2‖∂2xun‖2L2(Qn
xt)
≤ 2‖fn‖2L2(Qn

xt)
+ 12‖un∂xun‖2L2(Qn

xt)

+
4b1νC1(ε1)

3
‖un(kt, t)‖2L2(1/n,T )

+
4b0νC0(ε0)

3
‖un(0, t)‖2L2(1/n,T )

. (109)

According to (88) from Lemma 7 we have the estimates

‖un(kt, t)‖2L2(1/n,T )
≤ K1T‖fn‖2L2(Qn

xt)
, ‖un(0, t)‖2L2(1/n,T )

≤ K1T‖fn‖2L2(Qn
xt)
, (110)

where K1 is constant from Lemma 7.

It remains to estimate the term 12‖un∂xun‖2L2(Qn
xt)

in (109). Using embedding

H1(0, kt) ↪→ L∞(0, kt) with embedding constant C0 and estimate (91) from Lemma 8, we
obtain

‖un∂xun‖2L2(Qn
xt)
≤

T∫
1/n

‖un‖2L∞(0,kt)‖∂xun‖
2
L2(0,kt)

dt

≤ C0

T∫
1/n

‖un‖2H1(0,kt)‖∂xun‖
2
L2(0,kt)

dt

≤ C0‖un‖2L∞(1/n,T ;H1(0,kt)‖∂xun‖
2
L2(Qn

xt)
≤ C0K2‖f‖2L2(Qxt)

‖∂xun‖2L2(0,kt)
dt, (111)

since ‖fn‖L2(Qn
xt)
≤ ‖f‖L2(Qxt) by definition (where K2 is the constant from Lemma 8).

Based on inequalities (109)–(111) we establish estimate (101) of Lemma 9. This completes
the proof of Lemma 9.

Lemma 10. For positive constants K3,K4 and K5 independent of n, for all t ∈ (1/n, T ] the
following inequalities take place:

‖∂tun(x, t)‖2L2(Qn
xt)
≤ K3‖fn‖2L2(Qn

xt)
, (112)

‖ d
dt
un(kt, t)‖2L2(1/n,T )

≤ K4‖fn‖2L2(Qn
xt)
, (113)

‖ d
dt
un(0, t)‖2L2(1/n,T )

≤ K5‖fn‖2L2(Qn
xt)
. (114)
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Proof. Estimate (112) follows from (101) in Lemma 9. It remains to prove the validity of
estimates (113)–(114). From boundary conditions (84)–(85) we obtain

‖ d
dt
un(0, t)‖L2(1/n,T ) ≤

b0
3
‖un(0, t)‖1/2L4(1/n,T )

+ b0ν‖∂xun(0, t)‖L2(1/n,T ), (115)

‖ d
dt
un(kt, t)‖L2(1/n,T ) ≤

b1
3
‖un(kt, t)‖1/2L4(1/n,T )

+ b1ν‖∂xun(kt, t)‖L2(1/n,T ). (116)

Estimates (113)–(114) follow, respectively, from (115)–(116) and from the statements of
Lemmas 7 and 8. Lemma 10 is completely proved.

Taking into account the obvious inequality

‖fn‖L2(Qn
xt)
≤ ‖f‖L2(Qxt) ∀n ∈ N∗,

from Lemmas 7–10 we directly obtain the validity of estimate (87) from Theorem 6. Thus,
we have proved the validity of Theorem 6.

10 Proof of Theorem 1. Existence

Proof of Theorem 1 is based on Theorem 6. In boundary value problem (83)–
(86) we continue with zeros each element of the sequence {un(x, t), fn(x, t), {x, t} ∈
Qnxt; un(kt, t), un(0, t), t ∈ (1/n, T ); n ∈ N∗}, respectively, over the entire domain Qxt and
for the entire interval (0, T ). As a result, we obtain a sequence of functions that we denote
by {

ũn(x, t), f̃n(x, t), ˜un(kt, t), ũn(0, t), n ∈ N∗
}
. (117)

Obviously, each four functions from sequence (117) in the domain Qxt satisfy boundary value
problem (1)–(3) according to the statement of Theorems 5–6. In addition, note that estimate

(87) will be strengthened if we replace ‖f̃n(x, t)‖L2(Qxt) on its right-hand side by expression
‖f(x, t)‖L2(Qxt), since

‖f̃n(x, t)‖L2(Qxt) ≤ ‖f(x, t)‖L2(Qxt), for ∀n ∈ N∗.

Therefore, we obtain a bounded sequence of functions (117), from which we can extract a
weakly convergent subsequence (we preserve the notation of the index n for the subsequence),
i.e. we will have

ũn(x, t)→ u(x, t) weakly in H2,1(Qxt), (118)

˜un(kt, t)→ z1(t) ≡ u(kt, t) weakly in H1(0, T ), (119)

ũn(0, t)→ z0(t) ≡ u(0, t) weakly in H1(0, T ). (120)
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From (118)–(120), respectively, it follows that

ũn(x, t)→ u(x, t) strongly in L2(Qxt), (121)

˜un(kt, t)→ z1(t) ≡ u(kt, t) strongly in L2(0, T ), (122)

ũn(0, t)→ z0(t) ≡ u(0, t) strongly in L2(0, T ). (123)

Then, according to (118)–(123) in the following integral identities we can pass to the limit as
n→∞: ∫

Qxt

[
∂ tũn(x, t) + ũn(x, t)∂xũn(x, t)− ν∂2xũn(x, t)− f̃n(x, t)

]
ψ(x, t) dx dt

→
∫
Qxt

[
∂ tu(x, t) + u(x, t)∂xu(x, t)− ν∂2xu(x, t)− f(x, t)

]
ψ(x, t) dx dt = 0, ∀ψ ∈ L2(Qxt),

(124)
T∫
0

[
∂ tũn(x, t) +

b0
3

(ũn(x, t))2 − b0ν∂xũn(x, t)

]∣∣∣∣
x=0

ψ0(t) dt

→
T∫
0

[
∂ tu(x, t) +

b0
3

(u(x, t))2 − b0ν∂xu(x, t)

]∣∣∣∣
x=0

ψ0(t) dt = 0 ∀ψ0 ∈ L2(0, T ), (125)

T∫
0

[
∂ tũn(x, t)− b1

3
(ũn(x, t))2 + b1νũn(x, t)

]∣∣∣∣
x=kt

ψ1(t) dt

→
T∫
0

[
∂ tu(x, t)− b1

3
(u(x, t))2 + b1νu(x, t)

]∣∣∣∣
x=kt

ψ1(t) dt = 0 ∀ψ1 ∈ L2(0, T ). (126)

So, we have established that boundary value problem (1)–(3) has the solution u1(x, t) ∈
H2,1(Qxt) in the sense of integral identities (124)–(126). The existence part of Theorem 1
has been proved.

11 Proof of Theorem 1. Uniqueness

Let boundary value problem (1)–(3) have two different solutions u(1)(x, t) and u(2)(x, t).
Then their difference u(x, t) = u(1)(x, t) − u(2)(x, t) will satisfy the following homogeneous
problem:

∂ tu+ u∂xu
(1) + u(2)∂xu− ν∂2xu = 0, (127)
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d

dt
u(0, t) + b0

[
1

3
u
(
u(1) + u(2)

)
− ν∂xu

] ∣∣
x=0

= 0, (128)

d

dt
u(kt, t)− b1

[
1

3
u
(
u(1) + u(2)

)
− ν∂xu

] ∣∣
x=kt

= 0. (129)

According to Lemmas 7 and 8 we have

u(i)(x, t) ∈ L∞(0, T ;H1(0, kt)) ∩ L2(0, T ;H2(0, kt)), (130)

u(i)(kt, t) and u(i)(0, t) ∈ L∞(0, T ), i = 1, 2. (131)

Multiplying equation (127) by function u(x, t) scalarly in L2(0, kt) and taking into account
(128)–(131), we obtain

1

2

d

d t
‖u(x, t)‖2L2(0,kt)

+
1

2b1

d

d t
|u(kt, t)|2 +

1

2b0

d

d t
|u(0, t)|2

+ν ‖∂xu(x, t)‖2L2(0,kt)
≤ 1

3
|u(kt, t)|2

[
u(1)(kt, t) + u(2)(kt, t)

]
+

1

3
|u(0, t)|2

[
u(1)(0, t) + u(2)(0, t)

]
−

kt∫
0

[
u2∂xu

(1) + u(2)u∂xu
]
dx+ k|u(kt, t)|2. (132)

Here we have used the following equality

d

d t
‖u(x, t)‖2L2(0,kt)

= 2

kt∫
0

∂tu(x, t)u(x, t) dx+ k|u(kt, t)|2.

Let us estimate the right-hand side of (132). According to (130)–(131) and Lemma 7, we
have:

1

3

[
u(1)(kt, t) + u(2)(kt, t)

]
|u(kt, t)|2

≤ 1

3

[
‖u(1)(kt, t)‖L∞(0,T ) + ‖u(2)(kt, t)‖L∞(0,T )

]
|u(kt, t)|2 ≤ C1|u(kt, t)|2, (133)

1

3

[
u(1)(0, t) + u(2)(0, t)

]
|u(0, t)|2

≤ 1

3

[
‖u(1)(0, t)‖L∞(0,T ) + ‖u(2)(0, t)‖L∞(0,T )

]
|u(0, t)|2 ≤ C2|u(0, t)|2, (134)

kt∫
0

[
u2∂xu

(1) + u(2)u∂xu
]
dx =

[
|u(kt, t)|2u(1)(kt, t)− |u(0, t)|2u(1)(0, t)

]
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+

kt∫
0

[
−2u(1)u∂xu+ u(2)u∂xu

]
dx ≤ C3|u(kt, t)|2 + C4|u(0, t)|2

+
1

2ν

[
2‖u(1)‖L∞(Qxt) + ‖u(2)‖L∞(Qxt)

]2
‖u‖2L2(0,kt)

+
ν

2
‖∂xu‖2L2(0,kt)

≤ C3|u(kt, t)|2 + C4|u(0, t)|2 + C5‖u(x, t)‖2L2(0,kt)
+
ν

2
‖∂xu‖2L2(0,kt)

. (135)

Based on relations (132)–(135) we establish

d

d t
‖u(x, t)‖2L2(0,kt)

+
1

b1

d

d t
|u(kt, t)|2 +

1

b0

d

d t
|u(0, t)|2 + ν ‖∂xu(x, t)‖2L2(0,kt)

≤ 2(C1 + C3)|u(kt, t)|2 + 2(C2 + C4)|u(0, t)|2 + 2C5‖u(x, t)‖2L2(0,kt)
, ∀ t ∈ (0, T ]. (136)

Now we estimate the penultimate term from (136). Taking into account the interpolation
inequality form ([25], Theorem 5.9, p.140–141), we will have

2C5‖u(x, t)‖2L2(0,kt)
≤ 2C5K

2‖u‖H1(0,kt)‖u‖L2(0,kt)

≤ 4C5K
2
[
‖u‖L2(0,kt) + ‖∂xu‖L2(0,kt)

]
‖u‖L2(0,kt)

= 4C5K
2‖u‖2L2(0,kt)

+ 4C5K
2‖∂xu‖L2(0,kt)‖u‖L2(0,kt)

≤ ν

2
‖∂xu‖2L2(0,kt)

+

[
4C5K

2 +
8C2

5K
4

ν

]
‖u‖2L2(0,kt)

, (137)

where K is the constant from Theorem 5.9, p.140–141 [25].

From (136)–(137), applying Gronwall’s inequality, we obtain:

‖u1(x, t)‖2L2(0,kt)
+ |u1(kt, t)|2 + |u1(0, t)|2 ≡ 0, ∀ t ∈ (0, t∗].

This means that u(1)(x, t) ≡ u(2)(x, t) in L2(Qxt), u
(1)(kt, t) ≡ u(2)(kt, t) and u(1)(0, t) ≡

u(2)(0, t) in L2(0, T ), i.e. the solution to initial boundary value problem 1 (1)–(3) can be only
one. The uniqueness is proved.

Thus, we have proved the main result of our work, Theorem 1.

12 Conclusion

In this work, in the Sobolev classes, we have established the solvability theorems for
boundary value problem for the Burgers equation in a degenerating domain, the degeneration
point of which is at the origin. Moveover, the moving part of the boundary obeys a linear
law. The established results can be useful in the problems of modeling (a) nonlinear thermal
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fields in high voltage contact devices, (b) nonlinear processes of diffusion and propagation of
foreign inclusions in the flows of water and atmospheric areas, etc.
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Жиеналиев М. Т., Ерғалиев М.Г. БҰРЫШТЫ ОБЛЫСТАҒЫ БЮРГЕРС ТЕҢДЕ-
УIНЕ ҚОЙЫЛҒАН ДИНАМИКАЛЫҚ ШАРТТАРЫ БАР ШЕКАРАЛЫҚ ЕСЕП ТУ-
РАЛЫ

Бұған дейiн [1] және [2] жұмыстарында Бюргерс теңдеуi үшiн Дирихле шекаралық
есебiнiң қисынды шешiмдiлiгi орнатылған. Ол жұмыстардан осы жұмыстың ерекшелi-
гi бiз Соболев кеңiстiгiнде және бұрышты облыста Бюргерс теңдеуi үшiн динамикалық
шекаралық шарттары бар шекаралық есептiң қисынды шешiмдiлiгiн көрсетемiз. Функ-
ционалдық талдау, априорлы бағалаулар және Фаедо-Галеркин әдiсi қолданылады.

Кiлттiк сөздер. Бюргерс теңдеуi, Соболев кеңiстiгi, азғындалатын облыс, динамика-
лық шекаралық шарттар, априорлы бағалаулар.

Дженалиев М.Т., Ергалиев М.Г. О ГРАНИЧНОЙ ЗАДАЧЕ С ДИНАМИЧЕСКИМИ
УСЛОВИЯМИ ДЛЯ УРАВНЕНИЯ БЮРГЕРСА В УГЛОВОЙ ОБЛАСТИ

Ранее в работах [1] и [2] была установлена корректность граничной задачи Дирихле
для уравнения Бюргерса. В отличие от этих работ, в пространствах Соболева и в угловой
области мы показываем корректность граничной задачи для уравнения Бюргерса с ди-
намическими граничными условиями. Используются методы функционального анализа,
априорных оценок и Фаэдо-Галеркина.

Ключевые слова. Уравнение Бюргерса, пространство Соболева, вырождающаяся об-
ласть, динамические граничные условия, априорные оценки.
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1. Introduction

Let T denote the interval [−π, π], C the complex plane. We denote by Lp(T), 1 ≤ p < ∞,
the Lebesgue space of all measurable 2π-periodic functions, for which the norm

∥f∥p =

∫
T

|f(x)|p dx

1/p

< ∞.

A convex and continuous functionM : [0,∞) →. [0,∞) which satisfies the four conditions
M (0) = 0, M (u) > 0 for u > 0, M(u)/u → 0 if u → 0, and M(u)/u → ∞ if u → ∞
is called an N -function. The complementary N -function to M is defined by N(v) =
max {uv −M(u) : u ≥ 0} if v ≥ 0. We will say that M satisfies the ∆2-condition if M(2u) ≤
cM(u) for any u ≥ u0 ≥ 0 with some constant c, independent of u.

Let T denote the interval [−π, π] , C the complex plane, and Lp(T), 1 ≤ p ≤ ∞, the
Lebesgue space of measurable complex-valued functions on T.

2010 Mathematics Subject Classification: Primary 42A10, 41A25; Secondary 46E30.
c⃝ 2021 Kazakh Mathematical Journal. All right reserved.
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For a given Young function M , let L̃M (T) denote the set of all Lebesgue measurable
functions f : T → C for which ∫

T

M (|f(x)|) dx < ∞.

Let N be the complementary Young function of M . It is well-known [1, p. 69], [2, pp.
52-68] that the linear span of L̃M (T) equipped with the Orlicz norm

∥f∥LM (T) := sup


∫
T

|f(x)g(x)| dx : g ∈ L̃N (T),
∫
T

N (|g(x)|) dx ≤ 1

 ,

becomes a Banach space. This space is denoted by LM (T) and is called an Orlicz space
[1, p. 26]. The Orlicz spaces are known as the generalizations of the Lebesgue spaces
Lp(T), 1 < p < ∞.

If we choose M(u) = up/p (1 < p < ∞), then the complementary function is N(u) = uq/q
with 1/p+ 1/q = 1 and we have the relation

p−1/p ∥u∥Lp(T) ≤ ∥u∥LM (T) ≤ q1/q ∥u∥Lp(T) ,

where ∥u∥Lp(T) =

(∫
T
|u(x)|p dx

)1/p

denotes the usual norm of the space Lp(T).

The Orlicz space LM (T) is reflexive if and only if theN -functionM and its complementary
function N both satisfy the ∆2-condition [2, p. 113].

Let M−1 : [0,∞) → [0,∞) be the inverse function of the N -function M. The lower and
upper indices

αM := lim
t→+∞

− log h(t)

log t
, βM := lim

t→o+
− log h(t)

log t

of the function

h : (0,∞) → (0,∞], h(t) := lim
y→∞

sup
M−1(y)

M−1(ty)
, t > 0,

first considered by Matuszewska and Orlicz [3], are called the Boyd indices of the Orlicz
space LM (T).

It is known that the indices αM and βM satisfy 0 ≤ αM ≤ βM ≤ 1, αN + βM = 1,
αM +βN = 1 and the space LM (T) is reflexive if and only if 0 < αM ≤ βM < 1. The detailed
information about the Boyd indices can be found in [4] - [7].

A measurable function ω : T → [0,∞] is called a weight function if the set ω−1 ({0,∞})
has Lebesgue measure zero. With any given weight ω we associate the ω-weighted Orlicz
space LM (T, ω) consisting of all measurable functions f on T such that

∥f∥LM (T,ω) := ∥fω∥LM (T) < ∞.
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Let 1 < p < ∞, 1/p+1/p′ = 1 and let ω be a weight function on T. ω is said to satisfy
Muckenhoupt’s Ap-condition on T [8] - [10] if

sup
J

 1

|J |

∫
J

ωp (t) dt

1/p 1

|J |

∫
J

ω−p′ (t) dt

1/p′

< ∞,

where J is any subinterval of T and |J | denotes its length.
Let us denote by Ap (T) the set of all weight functions satisfying Muckenhoupt’s Ap-

condition on T.
Note that by [11, Lemma 3.3], and [12, Section 2.3] if LM (T) is reflexive and ω weight

function satisfies the condition ω ∈ A1/αM
(T) ∩ A1/βM

(T) , then the space LM (T, ω) is also
reflexive.

Let LM (T, ω) be a weighted Orlicz space, let 0 < αM ≤ βM < 1 and let ω ∈ A 1
αM

(T) ∩
A 1

βM

(T). For f ∈ LM (T, ω) we set

(σhf) (x) :=
1

2h

h∫
−h

f (x+ t) dt, 0 < h < π, x ∈ T.

By [10, Lemma 1] the shift operator σh is a bounded linear operator on LM (T, ω):

∥σh (f)∥LM (T,ω) ≤ C ∥f∥LM (T,ω) .

The function

Ωk
M,ω (δ, f) := sup

0<hi≤δ
1≤i≤k

∥∥∥∥∥
k∏

i=1

(I − σhi
) f

∥∥∥∥∥
LM (T,ω)

, δ > 0, k = 1, 2, ...,

is called k-th modulus of smoothness of f ∈ LM (T, ω), where I is the identity operator.
It can easily be shown that Ωk

M,ω (·, f) is a continuous, nonnegative and nondecreasing
function satisfying the conditions

lim
δ→0

Ωk
M,ω (δ, f) = 0, Ωk

M,ω (δ, f + g) ≤ Ωk
M,ω (δ, f) + Ωk

M,ω (δ, g) , δ > 0,

for f, g ∈ LM (T, ω).
Let

a0
2

+

∞∑
k=1

Ak(x, f) (1)

be the Fourier series of the function f ∈ L1(T), where
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Ak(x, f) := (ak (f) cos kx+ bk (f) sin kx),
ak(f) and bk(f) are Fourier coefficients of the function f ∈ L1(T).

We denote by
∏

nthe class of trigonometric polynomials of degree at most n. The best
approximation of f ∈ LM (T, ω) by trigonometric polynomials is defined as

En (f)M,ω := inf
{
∥f − Tn∥LM (T,ω) : Tn ∈

∏
n

}
.

We use the constants c, c1, c2, ... (in general, different in different relations) which depend
only on the quantities that are not important for the questions of interest.

To prove the main results we need the following theorem [10].

Theorem 1.1. Let LM (T, ω) be a weighted, Orlicz space with Boyd indices 0 < αM ≤ βM <
1, and let ω ∈ A 1

αM

(T) ∩A 1
βM

(T) .
If f ∈ LM (T, ω), then the inequality

Ωk
M,ω

(
1

n
, f

)
≤ c1

n2k

{
E0 (f)M,ω +

n∑
ν=1

ν2k−1Eν(f)M,ω

}
(2)

holds with a constant c1 > 0, independent of n.

2. Main Results

The problems of approximation theory in weighted and non-weighted Orlicz spaces have
been investigated by several authors (see, for example, [10], [13] - [26]).

In this work we investigate the problem of the best approximation in the weighted Orlicz
spaces. Also, we prove the inverse theorem of approximation theory in weighted Orlicz spaces.
Similar approximation problems in the space of continuous functions have been investigated
in [27], [28], [30] and [32]. Also, similar results in weighted generalized grand Lebesgue spaces
and weighted Smirnov classes have been obtained in [29] and in [31], respectively.

Our main results are the following.

Theorem 2.1. Let LM (T, ω) be a weighted Orlicz space with Boyd indices 0 < αM ≤ βM <
1, and let ω ∈ A 1

αM

(T) ∩A 1
βM

(T), let

f(x) ∼ a0
2

+

∞∑
n=1

(an cosnx+ bn sinnx) (3)

be its Fourier series and let
∞∑
n=1

En(f)M,ωn
α−1 < ∞, (4)
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where α ∈ R.
Then the series

a0
2

+
∞∑
n=1

nα (an cosnx+ bn sinnx) (5)

is the Fourier series of the some function f̃ ∈ LM (T, ω) and for this f̃ ∈ LM (T, ω) the
estimates

En(f̃)M,ω ≤ c2

[
En(f)M,ωn

α +

∞∑
k=n+1

Ek(f)M,ωk
α−1

]
(n = 1, 2, ...) , (6)

E0(f̃)M,ω ≤ c3

[
E0(f)M,ω +

∞∑
k=1

Ek(f)M,ωk
α−1

]
, (7)

hold with a constant c2 > 0, which does not depend on f and n.

Note that in [14, Theorem 5] we can find the proof of the inequality (6) for α = 2r, r ∈ N,
with another restrictions on function M and weight ω.

Corollary 2.2. Under the conditions of Theorem 1.1 the estimate

Ωk
M,ω

(
1

n
, f̃

)
≤ c4

{
1

n2k

n∑
ν=1

ν2k+α−1Eν−1(f)M,ω +
∞∑

s=n+1

sα−1Es(f)M,ω

}
(8)

holds with a constant c4 > 0, which depends on α and k.

Note that a similar estimate in the Lebesgue spaces for modulus of continuity was proved
in [30]. Also, in [18, Theorem 1] was proved inequality (8) for α = r ∈ N, with the same
restrictions on functions M and ω.

3. Proofs of the theorems

Proof of Theorem 2.1. Let sn and s̃n be the n-th partial sums of (3) and (5), respectively,
and let µn = nα (n = 1, 2, ...). Using Abel transformation, we find that

s̃m − f =
m−1∑
i=1

(si − f)∆µi + (sm − f) µm (m = 1, 2, ...) ,

where ∆µi = µi − µi+1.
It is clear that |∆µi| ≤ ciα−1. Then for a fixed n = 1, 2... and for every k = 0, 1... we have

s̃
2k+1n

− s̃
2kn

=
2k+1n−1∑
i=2kn

(si − f)∆µi + (s2k+1n − f)µ2k+1n − (s2kn − f)µ2kn. (9)
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Considering [14], the inequality

∥f − sn∥LM (T, ω) ≤ c5En(f)M,ω (10)

holds. Then from (9) and (10) we obtain∥∥∥s̃
2k+1n

− s̃
2kn

∥∥∥
LM (T,ω)

≤ c6

2k+1n−1∑
l=2kn

El(f)M,ωl
α−1 + c7E2kn(f)M,ω(2

kn)α

≤ c82
knE2kn(f)M,ω(2

kn)α−1 + c9(2
kn)αE2kn(f)M,ω

= c10(2
kn)αE2kn(f)M,ω.

The last inequality yields

∞∑
k=0

∥∥∥s̃
2k+1n

− s̃
2kn

∥∥∥
LM (T,ω)

≤ c11

∞∑
k=0

(2kn)αE2kn(f)M,ω. (11)

On the other hand the following inequality holds:

∞∑
k=1

(2kn)αE2kn(f)M,ω ≤ c12

∞∑
k=n+1

kα−1Ek(f)M,ω. (12)

Consideration of (11) and (12) gives us

∞∑
k=0

∥∥∥s̃
2k+1n

− s̃
2kn

∥∥∥
LM (T,ω)

≤ c13

[
En(f)M,ωn

α +

∞∑
k=n+1

kα−1Ek(f)M,ω

]
. (13)

By (4), it follows that the series

s̃n +

∞∑
k=o

(s̃
2k+1n

− s̃
2kn

)

converges in the sense of the metric LM (T, ω) to some function f̃ ∈ LM (T, ω) . It is clear that
the series (5) is the Fourier series of the function f̃ . We can write the following inequality

En(f̃)M,ω ≤
∥∥∥f̃ − s̃n

∥∥∥
LM (T,ω)

≤
∞∑
k=0

∥∥∥s̃
2k+1n

− s̃
2kn

∥∥∥
LM (T, ω)

.
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Now combining (13) and last relation, we obtain the inequality (6) of Theorem 2.1.

Now, we estimate E0(f̃)M,ω. The inequality

E0(f̃)M,ω ≤
∥∥∥f̃ − a0

2

∥∥∥
LM (T,ω)

≤
∥∥∥f̃ − s̃1

∥∥∥
LM (T,ω)

+
∥∥∥s̃1 − a0

2

∥∥∥
LM (T,ω)

(14)

holds. From (10) and (6) we have

∥∥∥f̃ − s̃1

∥∥∥
LM (T,ω)

≤ c14E1(f̃)M,ω ≤ c15

[
E1(f)M,ω +

∞∑
k=2

Ek(f)M,ωk
α−1

]
. (15)

It is known that∥∥∥s̃1 − a0
2

∥∥∥
LM (T,ω)

= ∥a1 cosx+ b1 sinx∥LM (T,ω) ≤ 2π (|a1|+ |b1|) . (16)

We choose a number t0, such that ∥f − t0∥LM (T,ω) = E0(f)M,ω. Then we obtain

π |a1| =

∣∣∣∣∣∣
2π∫
0

f(x) cosxdx

∣∣∣∣∣∣ =
∣∣∣∣∣∣
2π∫
0

[f(x)− t0] cosxdx

∣∣∣∣∣∣
≤ c16 ∥f − t0∥LM (T,ω) = c16E0(f)M,ω.

The last inequality yields

|a1| ≤
c16
π

E0(f)M,ω. (17)

Similar to the above, we obtain

|b1| ≤
c17
π

E0(f)M,ω. (18)

Using (14),(15)-(18), we obtain the inequality (7) of Theorem 2.2.

Proof of Corollary 2.2. Taking into account the relations (2), (6) and (7), we get

Ωk
M,ω

(
1

n
, f̃

)
≤ c19

n2k

{
E0(f̃)M,ω +

n∑
ν=1

ν2k−1Eν(f̃)M,ω

}

≤ c20
n2k

[
E0(f)M,ω +

∞∑
ν=1

Eν(f)M,ων
α−1

]

+
c21
n2k

n∑
ν=1

ν2k−1

[
Eν(f)M,ων

α +

∞∑
s=ν+1

sα−1Es(f)M,ω

]

Kazakh Mathematical Journal, 21:2 (2021) 47–56



54 Sadulla Z. Jafarov

≤ c22
n2k

[
n∑

ν=1

ν2k+α−1Eν−1(f)M,ω +

n∑
ν=1

ν2k−1
∞∑
s=ν

sα−1Es(f)M,ω

]

≤ c23
n2k

[
n∑

ν=1

ν2k+α−1Eν−1(f)M,ω

]

+
c24
n2k

n∑
ν=1

ν2k−1

[
n∑

s=ν

sα−1Es(f)M,ω +
∞∑

s=n+1

sα−1Es(f)M,ω

]

≤ c25

{
1

n2k

n∑
ν=1

ν2k+α−1Eν−1(f)M,ω +
1

n2k

n∑
s=1

sα−1Es(f)M,ω

s∑
ν=1

ν2α−1

}

+

∞∑
s=n+1

sα−1Es(f)M,ω

≤ c26

{
1

n2k

n∑
ν=0

(ν + 1)2k+α−1Eν(f)M,ω +
1

n2k

n∑
s=1

s2k+α−1Eν(f)M,ω

}

+

∞∑
s=n+1

sα−1Es(f)M,ω

≤ c27

{
1

n2k

n∑
ν=1

ν2k+α−1Eν−1(f)M,ω +
∞∑

s=n+1

sα−1Es(f)M,ω

}
,

which finishes the proof.
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Жафаров С.З. САЛМАҚТЫ ОРЛИЧ КЕҢIСТIКТЕРIНДЕГI ЕҢ ЖАҚСЫ ТРИ-
ГОНОМЕТРИЯЛЫҚ ЖУЫҚТАУ ҮШIН КЕЙБIР ТЕҢСIЗДIКТЕР ЖӘНЕ ФУРЬЕ
КОЭФФИЦИЕНТТЕРI

Бұл жұмыста салмақты Орлич кеңiстiктерiндегi функцияның ең жақсы жуыаулары
зерттеледi. Сонымен бiрге салмақты Орлич кеңiстiктерiндегi жуықтаулар теориясының
керi есебi зерделенедi.

Кiлттiк сөздер. Орлич кеңiстiктерi, салмақты Орлич кеңiстiктерi, Бойд индексi, те-
гiстiк модулi, ең жақсы жуықтау, керi теорема.

Джафаров С.З. НЕКОТОРЫЕ НЕРАВЕНСТВА ДЛЯ НАИЛУЧШЕГО ТРИГОНО-
МЕТРИЧЕСКОГО ПРИБЛИЖЕНИЯ И КОЭФФИЦИЕНТЫ ФУРЬЕ В ВЕСОВЫХ
ПРОСТРАНСТВАХ ОРЛИЧА

В этой работе исследуются наилучшие приближения функции в весовых простран-
ствах Орлича. Также изучается обратная задача теории приближений в весовых про-
странствах Орлича.

Ключевые слова. Пространства Орлича, весовые пространства Орлича, индексы Бой-
да, модуль гладкости, наилучшее приближение, обратная теорема.
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