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Abstract. In this article we investigate the correctness of boundary value problems for the sixth order
quasi-hyperbolic equation in Sobolev space

Lu = −D6
tu+ ∆u− λu

(Dt = ∂
∂t

, ∆ =
n∑
i=1

∂2

∂x2i
is the Laplace operator, λ is a real parameter). For the given operator L two

spectral problems are introduced and the uniqueness of these problems is established. The eigenvalues

and eigenfunctions of the first spectral problem are calculated for the sixth order quasi-hyperbolic

equation. In this work we show that the equation Lu = 0 for λ < 0 under uniform conditions has a

countable set of nontrivial solutions. Usually, this does not happen when the operator L is an ordinary

hyperbolic operator.

Keywords. Sixth order quasi-hyperbolic equation, boundary value problems, eigenvalues, eigenfunctions,

nontrivial solutions.

1 Introduction and Formulation of the problem

Let Ω be a limited area of space Rn of variables x1, x2, ..., xn with a smooth compact
boundary Γ = ∂Ω. Let us consider the following differential operator in the cylindrical area
Q = Ω× (0, T ), S = Γ× (0, T ), 0 < T < +∞,

Lu ≡ −∂
6u

∂t6
+ ∆u− λu = f(x, t), x ∈ Ω, t ∈ (0, T ), (1)

2010 Mathematics Subject Classification: 35M99, 35R99, 53C35.
Funding: This work was done with support of grant AP05135319 of the Ministry of Education and Science

of the Republic of Kazakhstan.
c© 2020 Kazakh Mathematical Journal. All right reserved.



On correct boundary value problems ... 7

where f(x, t) is a given function.

Boundary value problem I3,λ. It is required to find a function u(x, t) which is a solution
to equation (1) in the cylinder Q that satisfies the following conditions:

u(x, t)|S = 0, (2)

u(x, 0) =
∂u

∂t
(x, 0) =

∂2u

∂t2
(x, 0) =

∂3u

∂t3
(x, 0) = 0, x ∈ Ω, (3)

∂u

∂t
(x, T ) =

∂2u

∂t2
(x, T ) = 0, x ∈ Ω. (4)

Boundary value problem II3,λ. It is required to find a function u(x, t) which is a solution
to equation (1) in the cylinder Q that satisfies conditions (2), (3) and

D4
t u(x, t)|t=T = D5

t u(x, t)|t=T = 0, x ∈ Ω. (5)

The study of the solvability of boundary value problems for quasi-hyperbolic equations
began, apparently, with the works of V.N. Vragov [1], [2]. Studies in [3]–[7] are related to
further investigations of operators similar to L. One of the main conditions for correctness in
these studies was the condition that parameter λ is non-negative. Investigations of nonlocal
problems with integral conditions for linear parabolic equations, for differential equations of
the odd order, and for some classes of non-stationary equations have been actively carried
out recently in the works of A.I. Kozhanov [4], [6], [7]. In [5], the solvability of problem (2),
(3), (5) for the fourth order quasi-hyperbolic equations with p = 2 is investigated. In the
work [8] boundary value problems with normal derivatives were studied for elliptic equations
of the (2l)-st order with constant real coefficients. For these problems, sufficient conditions
for the Fredholm solvability of the problem are obtained and formulas for the index of this
problem are given. An explicit form of the Green’s function of the Dirichlet problem for
the model-polyharmonic equation ∆lu = f in a multidimensional sphere was constructed
in [9]. [10], [11] are devoted to investigations of the solvability of various boundary value
problems of the orders 0 ≤ k1 < k2 < ... < kl ≤ 2l − 1 for the polyharmonic equation in a
multidimensional ball.

In this paper, we describe calculation of eigenvalues λ
(1)
m (λ

(2)
m ) of spectral problems

I3,λ (II3,λ) for the sixth order quasi-hyperbolic equation and study the solvability of boundary

value problems I3,λ (II3,λ) for the cases when λ coincides or does not coincide with λ
(1)
m (λ

(2)
m ).

2 Supporting statement

We denote by V3 the linear set of functions v(x, t), belonging to the space L2(Q) and having
generalized derivatives with respect to spatial variable up to the second order inclusively

Kazakh Mathematical Journal, 20:1 (2020) 6–17



8 Alexandr I. Kozhanov, Bakytbek D. Koshanov, Gulzhazira D. Smatova

belonging to the same space and with respect to the variable t up to the order 6 inclusively,
with the norm

‖v‖V3 =

(∫
Q

[
v2 +

n∑
i,j=1

( ∂2v

∂xi∂xj

)2
+
(∂6v

∂t6

)2]
dxdt

) 1
2

.

Obviously, the space V3 with this norm is Banach space.

Let v(x) be function from the space
◦
W

1

2 (Ω). The following inequality is true:∫
Ω

v2(x)dx ≤ c0

∫
Ω

n∑
i=1

v2
xi(x)dx, (6)

where constant c0 defined only by the area Ω (see, example in [12]).

For the function from the space V3 satisfying condition (3), the following inequality holds:

∫
Ω

v2(x, t0)dx ≤ T 3

T∫
0

∫
Ω

v2
ttt(x, t)dxdt, t0 ∈ [0, T ], (7)

T∫
0

∫
Ω

v2(x, t)dxdt ≤ T 6

8

T∫
0

∫
Ω

v2
ttt(x, t)dxdt. (8)

Let ωj(x) be the eigenfunction of the Dirichlet problem for the Laplace operator corre-
sponding to the eigenvalue µj :

∆ωj(x) = µjωj(x), ωj(x)|Γ = 0.

3 Main results

Theorem 1. Let λ > c1, c1 = min{− 1
c0
,− 40

T 6 }, c0 from (6). Then the homogeneous boundary
value problem I3,λ has only zero solution in the space V3. On the interval (−∞, c1) there

exists a countable set of numbers λ
(1)
m such that for λ = λ

(1)
m the homogeneous boundary value

problem I3,λ has a non-trivial solution.

Proof. First, we prove the uniqueness of the solution to the problem I3,λ. Let A > T . We
consider the equality

T∫
0

∫
Ω

(A− t)Lu · utdxdt = 0.

Kazakh Mathematical Journal, 20:1 (2020) 6–17
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Integrating by parts and using conditions (2), (3), we get

A− T
2

∫
Ω

[u2
ttt(x, T ) +

n∑
i=1

u2
xi(x, T )]dx+

5

2

T∫
0

∫
Ω

u2
tttdxdt

+
1

2

n∑
i=1

T∫
0

∫
Ω

u2
xidxdt = −λ(A− T )

2

∫
Ω

u2(x, T )dx− λ

2

T∫
0

∫
Ω

u2dxdt = I. (9)

When λ ≥ 0 it follows from this equality that u(x, t) ≡ 0.

We now consider the case of negative values of λ. On the one hand due to expressions
(6) and (7), there is an inequality

|I| = | − λ(A− T )

2

∫
Ω

u2(x, T )dx− λ

2

T∫
0

∫
Ω

u2dxdt|

≤ |λ|(A− T )

2
T 3

T∫
0

∫
Ω

u2
tttdxdt+

|λ|
2
c0

n∑
i=1

T∫
0

∫
Ω

u2
xidxdt. (10)

On the other hand, due to inequalities (7) and (8) we get

|I| ≤ |λ|(A− T )

2
T 3

T∫
0

∫
Ω

u2
tttdxdt+

|λ|T 6

2 · 23

T∫
0

∫
Ω

u2
tttdxdt.

If c1 = − 1
c0

, then by evaluating the right side of (9) by (10), we get

A− T
2

∫
Ω

[u2
ttt(x, T ) +

n∑
i=1

u2
xi(x, T )]dx

+
5− |λ|(A− T )T 3

2

T∫
0

∫
Ω

u2
tttdxdt+

1− |λ|c0

2

n∑
i=1

T∫
0

∫
Ω

u2
xidxdt ≤ 0. (11)

Since inequality |λ|c0 < 1 holds and we can choose number A close to number T, the inequality

5− |λ|(A− T )T 3 > 0

holds for fixed values of λ. Then, from (11) it follows that u(x, t) ≡ 0.

Kazakh Mathematical Journal, 20:1 (2020) 6–17



10 Alexandr I. Kozhanov, Bakytbek D. Koshanov, Gulzhazira D. Smatova

In the case of c1 = − 40
T 6 , we have

A− T
2

∫
Ω

[u2
ttt(x, T ) +

n∑
i=1

u2
xi(x, T )]dx

+
40− 8|λ|(A− T )T 3 − |λ|T 6

2 · 23

T∫
0

∫
Ω

u2
tttdxdt+

1

2

n∑
i=1

T∫
0

∫
Ω

u2
xidxdt ≤ 0. (12)

Since 40− |λ|T 6 > 0, then choosing again A close to the T, inequality

40− 8|λ|(A− T )T 3 − |λ|T 6 > 0

can be achieved. Then, from (12) we also get u(x, t) ≡ 0.

The solution to equation (1) is sought in the form u(x, t) = ϕ(t)ωj(x). Then the function
ϕ(t) must be a solution to the equation

−D6
tϕ(t) + [µj − λ]ϕ(t) = 0, (13)

satisfying condition

ϕ(0) = ϕ′(0) = ϕ′′(0) = ϕ′′′(0) = ϕ′(T ) = ϕ′′(T ) = 0. (14)

a) If µj − λ > 0, then general solution (13) has the form

ϕ(t) = C1e
γjt + C2e

γjt

2 cos

√
3

2
γjt+ C3e

γjt

2 sin

√
3

2
γjt

+C4e
−γjt + C5e

−
γjt

2 cos

√
3

2
γjt+ C6e

−
γjt

2 sin

√
3

2
γjt, (15)

where γj = (µj−λ)
1
6 . Taking into account (14), the numbers Cj , j = 1, 6, should be a solution

to the algebraic system

Kazakh Mathematical Journal, 20:1 (2020) 6–17
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

C1 + C2 + C4 + C5 = 0,

C1 + 1
2C2 +

√
3

2 C3 − C4 − 1
2C5 +

√
3

2 C6 = 0,

C1 − 1
2C2 +

√
3

2 C3 + C4 − 1
2C5 −

√
3

2 C6 = 0,

C1 − C2 − C4 + C5 = 0,

E2C1 + E(1
2C −

√
3

2 S)C2 + E(
√

3
2 C + 1

2S)C3

−E−2C4 − E−1(1
2C +

√
3

2 S)C5 + E−1(
√

3
2 C −

1
2S)C6 = 0,

E2C1 − E(1
2C +

√
3

2 S)C2 + E(
√

3
2 C −

1
2S)C3

+E−2C4 + E−1(−1
2C +

√
3

2 S)C5 − E−1(
√

3
2 C + 1

2S)C6 = 0,

where

E = e
γjT

2 , C = cos

√
3

2
γjT , S = sin

√
3

2
γjT .

The determinant of this system will be equal to

D(γj) =
3

2

[
2E3C − 3E2 − 6EC + 10 + 4C2 − 6E−1C − 3E−2 + 2E−3C

]
,

and it can not be zero, therefore, in this case, problem (13), (14) has not non-trivial solutions.

b) If µj − λ < 0, then general solution (13) has a form

ϕ(t) = C1e
√
3

2
γjtcos

γjt

2
+ C2e

√
3

2
γjtsin

γjt

2
+ C3e

−
√
3

2
γjtcos

γjt

2

+C4e
−

√
3

2
γjtsin

γjt

2
+ C5cosγjt+ C6sinγjt, (16)

where γj = (λ−µj)
1
6 . Considering (14), the numbers Cj , j = 1, 6, should be a solution to the

algebraic system

Kazakh Mathematical Journal, 20:1 (2020) 6–17



12 Alexandr I. Kozhanov, Bakytbek D. Koshanov, Gulzhazira D. Smatova



C1 + C3 + C5 = 0,

√
3

2 C1 + 1
2C2 −

√
3

2 C3 + 1
2C4 + C6 = 0,

1
2C1 +

√
3

2 C2 + 1
2C3 −

√
3

2 C4 − C5 = 0,

C2 + C4 − C6 = 0,

E(
√

3
2 C −

1
2S)C1 + E(1

2C +
√

3
2 S)C2 − E−1(

√
3

2 C + 1
2S)C3

+E−1(1
2C −

√
3

2 S)C4 − 2CSC5 + (C2 − S2)C6 = 0,

E(1
2C −

√
3

2 S)C1 + E(
√

3
2 C + 1

2S)C2 + E−1(1
2C +

√
3

2 S)C3

+E−1(−
√

3
2 C + 1

2S)C4 + (−C2 + S2)C5 − 2CSC6 = 0,

where E = e
√
3
2
γjT , C = cos

γjT
2 , S = sin

γjT
2 .

This system has a nontrivial solution if the determinant

D(γj) = −C2S2 = −1

4
sin2γjT = 0 (17)

is equal to zero. From (17) we get desired set of eigenvalues

λ
(1)
jk = µjk +

(
kπ

T

)6

, k = 1, 2, ... . (18)

Theorem 1 is proved.

Corollary 1. The problem I3,λ does not have real eigenvalues other than the numbers λ
(1)
jk

from (18) and the family {λ(1)
jk }
∞
j,k=1 does not have finite limit points. All eigenvalues of

{λ(1)
jk }
∞
j,k=1 are finite multiplicity.

Proof. The fact that the problem I3,λ does not have real eigenvalues other than the numbers

λ
(1)
jk , follows from the basis of the system of functions

{ωj(x)}∞j=1

in the space W 2
2 (Ω).
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Suppose that the family {λ(1)
jk }
∞
j,k=1 has a finite limit point. Then there is a family (ji, ki)

of pairs of natural numbers such that ji + ki → ∞ as i → ∞ and the sequence λ
(1)
jk will

be fundamental. Note that the indices ji, cannot be limited together, since in this case

λjk = µjk +
(
kπ
T

)6
, k = 1, 2, ..., which cannot be true for a fundamental sequence.

Further, the indices ki also cannot be limited together, since in this case the sequence
{µji − µji+m} will be limited, which is not that case. Therefore, for the indices ji and ki,
ji → ∞, ki → ∞ hold as i → ∞. But then λjkki → −∞, which again does not hold for
a fundamental sequence. From the above, the validity of the second part of consequence

follows. The finite multiplicity of each eigenvalue λ
(1)
jk follows from the fact that for fixed

numbers j and k the equality λ
(1)
jk = λ

(1)
j1k1

is only possible for a finite set of indices j1 and k1.
Consequence proved.

Note that for the case n = 1 the eigenvalues µj could be in exact form, and then it is easy

to give constructive conditions for the simplicity of each eigenvalue λ
(1)
jk or to provide examples

in which the eigenvalues will have a multiplicity greater than one. In the general case, it is
also easy to give simplicity conditions, but it seems that they will not be constructive.

Corollary 2. The eigenvalues λ
(1)
jk of the problem I3,λ correspond to the eigenfunctions

u
(1)
jk (x, t) = ωj(x)ϕ

(1)
k (t),

where function ϕ
(1)
k (t) represented as

ϕ
(1)
k (t) =

C

12Sk(Ek − E−1
k )

[
−(3Ck(Ek − E−1

k ) + 5
√

3Sk(Ek + E−1
k ) + 6)e

√
3
2
γktcos

γkt

2

−(3
√

3Ck(Ek + E−1
k )− 15Sk(Ek − E−1

k ) + 3
√

3)e
√
3

2
γktsin

γkt

2

+(−3Ck(Ek + E−1
k ) + (4 + 5

√
3)Sk(Ek − E−1

k )− 6)e−
√
3
2
γktcos

γkt

2

+(3
√

3Ck(Ek + E−1
k ) + 15Sk(Ek − E−1

k )− 6
√

3)e−
√
3

2
γktsin

γkt

2

+(6Ck(Ek + E−1
k )− 6

√
3Sk(Ek − E−1

k ) + 12)cosγkt+ 12Sk(Ek − E−1
k )sinγkt

]
,

Ek = e
√

3πk
2 , Ck = cos

πk

2
, Sk = sin

πk

2
, C = Const, k = 1, 2, ... .

Now consider the problem II3. The study of the problem II3 is similar to I3. The
following theorem holds.
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14 Alexandr I. Kozhanov, Bakytbek D. Koshanov, Gulzhazira D. Smatova

Theorem 2. For λ > c1, c1 = min{− 1
c0
,− 40

T 6 }, the homogeneous boundary problem II3,λ has
only zero solution in the space V3. On the interval (−∞, c1) there does not exist a countable

set of numbers λ
(2)
m such that for λ = λ

(2)
m the homogeneous boundary problem II3,λ has only

trivial solution.

The solution to equation (1) is sought in the form u(x, t) = ϕ(t)ωj(x). Then, the function
ϕ(t) must be a solution to equation (13) that satisfies conditions

ϕ(0) = ϕ′(0) = ϕ′′(0) = ϕ′′′(0) = ϕ′′′′(T ) = ϕ′′′′′(T ) = 0. (19)

a) If µj − λ > 0, then the general solution ϕ(t) has the form

ϕ(t) = C1e
γjt + C2e

γjt

2 cos

√
3

2
γjt+ C3e

γjt

2 sin

√
3

2
γjt

+C4e
−γjt + C5e

−
γjt

2 cos

√
3

2
γjt+ C6e

−
γjt

2 sin

√
3

2
γjt,

where γj = (µj − λ)
1
6 . Considering (15), Cj , j = 1, 6, should be a solution to the algebraic

system 

C1 + C2 + C4 + C5 = 0,

C1 + 1
2C2 +

√
3

2 C3 − C4 − 1
2C5 +

√
3

2 C6 = 0,

C1 − 1
2C2 +

√
3

2 C3 + C4 − 1
2C5 −

√
3

2 C6 = 0,

C1 − C2 − C4 + C5 = 0,

E2C1 + E(−1
2C +

√
3

2 S)C2 − E(
√

3
2 C + 1

2S)C3

+E−2C4 − E−1(1
2C +

√
3

2 S)C5 + E−1(
√

3
2 C −

1
2S)C6 = 0,

E2C1 + E(1
2C +

√
3

2 S)C2 + E(−
√

3
2 C + 1

2S)C3

−E−2C4 + E−1(−1
2C +

√
3

2 S)C5 − E−1(
√

3
2 C + 1

2S)C6 = 0,

where E = e
γjT

2 , C = cos
√

3
2 γjT , S = sin

√
3

2 γjT . The determinant of this system will be
equal to

D(γj) = −3

2

[
2E3C + 3E2 + 6EC + 10 + 4C2 + 6E−1 + 3E−2 + 2E−3C

]
,
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and it can not be zero, therefore, in this case, there are no non-trivial solutions.

b) If µj − λ < 0, then the function ϕ(t) has the form

ϕ(t) = C1e
√

3
2
γjtcos

γjt

2
+ C2e

√
3

2
γjtsin

γjt

2
+ C3e

−
√
3

2
γjtcos

γjt

2

+C4e
−

√
3
2
γjtsin

γjt

2
+ C5cosγjt+ C6sinγjt,

where γj = (λ− µj)
1
6 . In this case, Cj , j = 1, 6, should be a solution to the algebraic system

C1 + C3 + C5 = 0,

√
3

2 C1 + 1
2C2 −

√
3

2 C3 + 1
2C4 + C6 = 0,

1
2C1 +

√
3

2 C2 + 1
2C3 −

√
3

2 C4 − C5 = 0,

C2 + C4 − C6 = 0,

−E(1
2C +

√
3

2 S)C1 + E(
√

3
2 C −

1
2S)C2 + E−1(−1

2C +
√

3
2 S)C3

−E−1(
√

3
2 C + 1

2S)C4 + (C2 − S2)C5 + 2CSC6 = 0,

−E(
√

3
2 C + 1

2S)C1 + E(1
2C −

√
3

2 S)C2 + E−1(
√

3
2 C −

1
2S)C3

+E−1(1
2C +

√
3

2 S)C4 − 2CSC5 + (C2 − S2)C6 = 0,

where E = e
√
3

2
γjT , C = cos

γjT
2 , S = sin

γjT
2 . The determinant of this system will be equal

to

D(γj) =
3

4

[
E2 + 8EC3 + 6 + 12C2 + 8E−1C3 + E−2

]
,

also can not be zero.

In conclusion, the problem II3,λ does not have real eigenvalues λ
(2)
jk . Theorem 2 is proved.
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Кожанов А.И., Қошанов Б.Д., Сматова Г.Д. АЛТЫНШЫ РЕТТI КЛАССИКАЛЫҚ
ЕМЕС ДИФФЕРЕНЦИАЛДЫҚ ТЕҢДЕУЛЕР ҮШIН ҚИСЫНДЫ ШЕТТIК ЕСЕП-
ТЕР ТУРАЛЫ

Бұл мақалада келесi алтыншы реттi квазигиперболалық теңдеу үшiн

Lu = −D6
t u+ ∆u− λu

шеттiк есептердiң Соболев кеңiстiгiндегi қисынды шешiлiмдiлiгi зерттелген, мұнда Dt =

∂
∂t , ∆ =

n∑
i=1

∂2

∂x2i
– Лаплас операторы, λ – нақты параметр. Берiлген L операторы үшiн екi

классикалық емес спектрлiк есеп қойылған. Қойылған есептердiң шешiмiнiң жалғызды-
ғы дәлелденген. Бiрiншi есептiң меншiктi мәндерi мен меншiктi функцияларының бар
екендiгi дәлелденген, яғни бұл есептiң нөлдiк емес шешiмдерi табылған. Бұл жұмыста
Lu = 0 теңдеуi үшiн λ < 0 болғанда және бiртектiлiк шарттары орындалғанда спектрлiк
есептiң нөлден өзгеше шешiмдерiнiң, яғни меншiктi функцияларының саналымды жүй-
есiнiң бар екендiгi көрсетiлген. L операторы кәдуiлгi гиперболалық оператор болғанда
мұндай жағдай әдетте орын алмайды.

Кiлттiк сөздер. Алтыншы реттi квазигиперболалық теңдеу, шеттiк есептер, меншiктi
мәндер, меншiктi функциялар, нөлдiк емес шешiмдер.

Кожанов А.И., Кошанов Б.Д., Сматова Г.Д. О КОРРЕКТНЫХ КРАЕВЫХ ЗАДА-
ЧАХ ДЛЯ НЕКЛАССИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ШЕСТО-
ГО ПОРЯДКА

В данной статье исследуется корректная разрешимость краевых задач для квазиги-
перболического уравнения шестого порядка в пространстве Соболева:

Lu = −D6
t u+ ∆u− λu

(Dt = ∂
∂t , ∆ =

n∑
i=1

∂2

∂x2i
– оператор Лапласа, λ – вещественный параметр). Ставятся две

неклассические спектральные задачи для данного оператора L. Доказывается единствен-
ность поставленных задач. Доказывается существование собственных чисел и собствен-
ных функций поставленной первой задачи. В работе будет показано, что для уравнения
Lu = 0 при λ < 0 и при выполнении однородных условий спектральная задача облада-
ет счетной системой нетривиальных решений – собственных функций. Обычно такое не
имеет место, когда оператор L есть обычный гиперболический оператор.

Ключевые слова. Квазигиперболические уравнения шестого порядка, краевые зада-
чи, собственные значения, собственные функции, нетривиальные решения.
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Abstract. In the present paper initial problem for the integro-differential diffusion system with nonlocal

nonlinear source is considered. The results on the existence of local mild solutions to the nonlinear

integro-differential diffusion system are presented.

Keywords. Local existence, mild solution, integro-differential diffusion system.

The main goal of the present paper is to obtain results on local existence of mild solution
to the integro-differential diffusion system

ut(x, t)−
∂2

∂x2
D1−α

0|t u(x, t) =
1

Γ(1− γ)

t∫
0

(t− s)−γ |v|p−1v(s)ds,

vt(x, t)−
∂2

∂x2
D1−β

0|t v(x, t) =
1

Γ(1− δ)

t∫
0

(t− s)−δ|u|q−1u(s)ds,

(1)

for (x, t) ∈ R× (0, T ) = ΩT , subject to the initial conditions

u (x, 0) = u0 (x) ≥ 0, v (x, 0) = v0 (x) ≥ 0, x ∈ R, (2)

where α, β, γ, δ ∈ (0, 1), p > 1, q > 1, Dµ
0|t is the left-handed Riemann-Liouville fractional

derivative of order µ ∈ (0, 1) and Γ is the gamma function of Euler.

2010 Mathematics Subject Classification: Primary 35R11; Secondary 35B44, 35A01.
Funding: The research is financially supported by a grant No.AP05131756 from the Ministry of Science

and Education of the Republic of Kazakhstan.
c© 2020 Kazakh Mathematical Journal. All right reserved.



Mild solution to integro-differential diffusion system ... 19

Recently, Kirane et al. in [1] concerned the Cauchy problem for the fractional diffusion
equation with a time nonlocal nonlinearity of exponential growth

Dα0|tu(x, t) + (−∆)
β
2 u(x, t) = I1−α0|t (eu), x ∈ RN , t > 0,

u(x, 0) = u0(x), x ∈ RN ,
(3)

where N ≥ 1, 0 < α < 1, 0 < β ≤ 2, Dα0|t is the Caputo fractional derivative operator of

order α, I1−α0|t (eu) is the Riemann-Liouville fractional integral of order 1− α for eu.

They proved the existence and uniqueness of the local solution by the Banach contraction
mapping principle. Then, the blowup result of the solution in finite time is established by
the test function method with a judicious choice of the test function.

Later on, Ahmad et al. in [2] considered the following problem
ut(x, t) + (−∆)

β
2 u(x, t) = I1−α0|t (eu), x ∈ RN , t > 0,

u(x, 0) = u0(x), x ∈ RN ,
(4)

and when the problem (3) is also considered with a nonlinearity of the form I1−α0|t (|u|p−1u),
it reads 

ut(x, t) + (−∆)
β
2 u(x, t) = I1−α0|t (|u|p−1u), x ∈ RN , t > 0,

u(x, 0) = u0(x), x ∈ RN ,
(5)

has been considered by Fino and Kirane in [3].

Also, Fino and Kirane in [4] studied the Cauchy problem for the semi-linear parabolic
system with a nonlinear memory

ut(x, t)−∆u(x, t) =
1

Γ(1− γ)

t∫
0

(t− s)−γ |v|p−1v(s)ds, x ∈ RN , t > 0,

vt(x, t)−∆v(x, t) =
1

Γ(1− δ)

t∫
0

(t− s)−δ|u|q−1u(s)ds, x ∈ RN , t > 0,

(6)

supplemented with the initial conditions

u (x, 0) = u0 (x) ≥ 0, v (x, 0) = v0 (x) ≥ 0, x ∈ RN , (7)
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where u0 (x), v0 (x) ∈ C0(RN ), γ, δ ∈ (0, 1) and Γ is the Euler gamma function.

In these papers, they proved the existence of a unique local solution and under some
suitable conditions on the initial data, they proved that the solution blows up in a finite time
and studied its time blow-up profile.

In [5], Zhang and Sun investigated the blow-up and the global existence of solutions of
the Cauchy problem for a time fractional nonlinear diffusion equation

Dα0|tu(x, t)−∆u(x, t) = |u|p−1u, x ∈ RN , t > 0,

u(x, 0) = u0(x), x ∈ RN ,
(8)

where p > 1, 0 < α < 1, u0 (x) ∈ C0(RN ) and Dα0|t is the Caputo fractional derivative operator
of order α.

Definition 1. The left and right Riemann-Liouville fractional integrals Iα0|tf(t) and Iαt|T f(t)

of order α ∈ R (α > 0), for all f(t) ∈ Lq(0, T ))(1 ≤ q ≤ ∞), we defined as [see p. 69 in [6]]

Iα0|tf(t) =
1

Γ (α)

t∫
0

(t− s)α−1f (s) ds,

and

Iαt|T f(t) =
1

Γ (α)

T∫
t

(s− t)α−1f(s)ds,

respectively.

Definition 2. If f(t) ∈ C([0, T ]), the left-handed and right-handed Riemann-Liouville frac-
tional derivatives Dα

0|tf(t) and Dα
t|T f(t) of order α ∈ (0, 1) are defined by [see p. 70 in [6]]

Dα
0|tf(t) =

d

dt
I1−α0|t f(t) =

1

Γ(1− α)

d

dt

t∫
0

(t− s)−αf (s) ds,

and

Dα
t|T f(t) = − d

dt
I1−αt|T f(t) = − 1

Γ(1− α)

d

dt

T∫
t

(s− t)−αf (s) ds,

for all f(t) ∈ [0, T ].
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Definition 3. The Mittag-Leffler function is given by [see p. 40 in [6]]

Eα,1(z) =
∞∑
k=0

zk

Γ(αk + 1)
, α > 0, z ∈ C.

Lemma 1 [7]. For every α ∈ (0, 1), the uniform bilateral estimate

1

1 + Γ(1− α)x
≤ Eα,1(−x) ≤ 1

1 + [Γ(1 + α)]−1x

holds over R+.

Lemma 2 [8]. The Fourier transform of Dirac delta function δ(x) in R defined by

F{δ(x); ξ} =
1

2π

∫
R

e−ixξδ(x)dx = 1, ξ ∈ R,

and the inverse Fourier transform of δ(x) can be written as

δ(x) = F−1{1} =
1

2π

∫
R

eixξdξ, ξ ∈ R.

The Dirac delta function δ(x), where x ∈ R, in [9]:

δ(x) =

{
+∞ for x = 0,

0 for x 6= 0,

and ∫
R

δ(x)dx = 1.

Definition 4 (Mild solution). Let u0, v0 ∈ C0(R), T > 0 and p, q > 1.

We say that (u, v) ∈ C0(R;C[0, T ]) × C0(R;C[0, T ]) is a mild solution of the system
(1)–(2), if u and v satisfy the following integral equations [see [10], Th. 2.5]:



u (x, t) =

∫
R

G (x− y, t)u0 (y) dy +

t∫
0

∫
R

G (x− y, t− τ)I1−γ0|s (|v|p−1v)dydτ,

v(x, t) =

∫
R

G (x− y, t)v0 (y) dy +

t∫
0

∫
R

G (x− y, t− τ)I1−δ0|s (|u|q−1u)dydτ,

(9)
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for t ∈ [0, T ), x ∈ R, where

G (x, t) =
1

2π

∫
R

e−ixξEα,1
(
−ξ2tα

)
dξ

is a heat kernel of problem (1)–(2) [10].

Lemma 3. G(x, t) function in (9) has the following estimate:∫
R

G(x, t)dx < 1, t > 0. (10)

Proof. Accordingly to Lemma 1, we have that

G (x, t) =
1

2π

∫
R

e−ixξEα,1
(
−ξ2tα

)
dξ ≤ 1

2π

∣∣∣∣∣∣
∫
R

e−ixξEα,1
(
−ξ2tα

)
dξ

∣∣∣∣∣∣
≤ 1

2π

∫
R

e−ixξ
∣∣Eα,1 (−ξ2tα)∣∣ dξ < 1

2π

∫
R

e−ixξ · 1dξ = δ(x),

where δ(x) is the Dirac delta function.

From Lemma 2 we obtain∫
R

G(x, t)dx <

∫
R

δ(x)dx = 1, t > 0.

Theorem 1 (Local existence). Given u0, v0 ∈ C0(R) and p, q > 1. Then, there
exists a maximal time T > 0 such that the system (1)–(2) has a unique mild solution
(u, v) ∈ C0(R;C[0, T )) × C0(R;C[0, T )). Furthermore, either T = ∞ or T < ∞ and
‖u(t)‖L∞(R×(0,T )) + ‖v(t)‖L∞(R×(0,T )) →∞, as t→ T .

Proof. For arbitrary T > 0, we define the Banach space

BT = {(u, v) ∈ C0(R;C[0, T ))× C0(R;C[0, T ));

||(u, v)||BT ≤ 2(‖ u0 ‖L∞(R) + ‖ v0 ‖L∞(R))},
(11)

where ‖ · ‖∞ = ‖ · ‖L∞(R) and || · ||BT is the norm of BT defined by

||(u, v)||BT =‖ u ‖1 + ‖ v ‖1=‖ u ‖L∞(R×(0,T )) + ‖ v ‖L∞(R×(0,T )),
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and
d(u, v) = max

t∈[0,T )
||u(t)− v(t)||L∞(R) for u, v ∈ BT .

Since C0(R;C[0, T )) is the Banach space, (BT ; d) is a complete metric space.

Next, for every (u, v) ∈ BT , we introduce the map Ψ defined on BT by

Ψ(u, v) := (Ψ1(u, v),Ψ2(u, v)),

where

Ψ1(u, v) =

∫
R

G (x− y, t)u0 (y) dy +

t∫
0

∫
R

G (x− y, t− τ)I1−γ0|s (|v|p−1v)dydτ, t ∈ [0, T ),

and

Ψ2(u, v) =

∫
R

G (x− y, t)v0 (y) dy

+

t∫
0

∫
R

G (x− y, t− τ)I1−δ0|s (|u|q−1u)dydτ, t ∈ [0, T ).

We will prove the local existence by the Banach fixed point theorem.

• Ψ : BT → BT .

If (u, v) ∈ BT , using Lemma 3, we obtain

||Ψ(u, v)||BT ≤ ‖u0‖∞ +
1

Γ(1− γ)

∥∥∥∥
t∫

0

s∫
0

(s− τ)−γ‖v(τ)‖p∞dτds
∥∥∥∥
L∞(0,T )

+‖v0‖∞ +
1

Γ(1− δ)

∥∥∥∥
t∫

0

s∫
0

(s− τ)−δ‖u(τ)‖q∞dτds
∥∥∥∥
L∞(0,T )

≤ ‖u0‖∞ +
1

Γ(1− γ)

∥∥∥∥
t∫

0

t∫
τ

(s− τ)−γ‖v(τ)‖p∞dsdτ
∥∥∥∥
L∞(0,T )

+‖v0‖∞ +
1

Γ(1− δ)

∥∥∥∥
t∫

0

t∫
τ

(s− τ)−δ‖u(τ)‖q∞dsdτ
∥∥∥∥
L∞(0,T )

≤ ‖u0‖∞ + C1T
2−γ‖v‖p1 + ‖v0‖∞ + C2T

2−δ‖u‖q1,
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where

C1 :=
1

(1− γ)(2− γ)Γ(1− γ)
=

1

Γ(3− γ)
,

C2 :=
1

(1− δ)(2− δ)Γ(1− δ)
=

1

Γ(3− δ)
.

As (u, v) ∈ BT , we get

||Ψ(u, v)||BT ≤ ‖u0‖∞ + C1T
2−γ‖v‖p1 + ‖v0‖∞ + C2T

2−δ‖u‖q1

≤ ‖u0‖∞ + ‖v0‖∞ + max{C1T
2−γ‖v‖p−11 ;C2T

2−δ‖u‖q−11 }(‖v‖1 + ‖u‖1)

≤ (‖u0‖∞ + ‖v0‖∞) + 2T (u0, v0)(‖u0‖∞ + ‖v0‖∞),

where

T (u0, v0) = max{C1T
2−γ2p−1(‖u0‖∞ + ‖v0‖∞)p−1;C2T

2−δ2q−1(‖u0‖∞ + ‖v0‖∞)q−1}.

If we choose T small enough such that

2T (u0, v0) ≤ 1, (12)

we conclude that ‖Ψ(u)‖1 ≤ 2(‖u0‖∞ + ‖v0‖∞) and hence Ψ(u, v) ∈ BT .

• Let Ψ be a contraction map.

For (u, v), (ũ, ṽ) ∈ BT , we have the estimate

||Ψ(u, v)−Ψ(ũ, ṽ)||BT

≤ 1

Γ(1− γ)

∥∥∥∥
t∫

0

s∫
0

(s− τ)−γ‖|v|p−1v(τ)− |ṽ|p−1ṽ(τ)‖∞dτds
∥∥∥∥
L∞(0,T )

+
1

Γ(1− δ)

∥∥∥∥
t∫

0

s∫
0

(s− τ)−δ‖|u|q−1u(τ)− |ũ|q−1ũ(τ)‖∞dτds
∥∥∥∥
L∞(0,T )

=
1

Γ(1− γ)

∥∥∥∥
t∫

0

t∫
τ

(s− τ)−γ‖|v|p−1v(τ)− |ṽ|p−1ṽ(τ)‖∞dsdτ
∥∥∥∥
L∞(0,T )

+
1

Γ(1− δ)

∥∥∥∥
t∫

0

t∫
τ

(s− τ)−δ‖|u|q−1u(τ)− |ũ|q−1ũ(τ)‖∞dsdτ
∥∥∥∥
L∞(0,T )
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= C1T
2−γ‖|v|p−1v − |ṽ|p−1ṽ‖1 + C2T

2−δ‖|u|q−1u− |ũ|q−1ũ‖1.

Now, by the same computations as above, we have

||Ψ(u, v)−Ψ(ũ, ṽ)||BT ≤ C1T
2−γ‖|v|p−1v − |ṽ|p−1ṽ‖1

+ C2T
2−δ‖|u|q−1u− |ũ|q−1ũ‖1

≤ C(p)C1T
2−γ(‖vp−1‖1 + ‖ṽ|p−1‖1)‖v − ṽ‖1

+ C(q)C2T
2−δ(‖uq−1‖1 + ‖ũ|q−1‖1)‖u− ũ‖1

≤ 2C(p, q)T (u0, v0)‖|(u, v)− (ũ, ṽ)‖| ≤ 1

2
‖|(u, v)− (ũ, ṽ)‖|,

thanks to the following inequality

||u|p−1u− |v|p−1v| ≤ C(p)|u− v|
(
|u|p−1 + |v|p−1

)
, (13)

T is chosen such that

max{2C(p, q), 1}T (u0, v0) ≤
1

2
. (14)

According to the Banach fixed point theorem, system (1)–(2) admits a unique mild solu-
tion (u, v) ∈ BT .
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Бөрiханов М.Б.
БЕЙЛОКАЛ ДЕРЕККӨЗДI ИНТЕГРАЛДЫҚ-ДИФФЕРЕНЦИАЛДЫҚ ДИФФУ-

ЗИЯЛЫҚ ТЕҢДЕУЛЕР ЖҮЙЕСIНIҢ ТЕГIС ШЕШIМI
Бұл жұмыста бейлокал бейсызықты дереккөздi интегралдық-дифференциалдық

диффузиялық теңдеулер жүйесi үшiн Коши есебiнiң локалды тегiс шешiмi зерттелген.
Берiлген теңдеулер жүйесi Фурье түрлендiруi арқылы шешiлiп, оның Грин функция-
сы құрылған және қасиеттерi келтiрiлген. Жалғыз локалды шешiмнiң бар екендiгi Ба-
нахтың жылжымайтын нүкте туралы теоремасы негiзiнде дәлелденедi.

Кiлттiк сөздер. Локалды шешiмнiң бар болуы, тегiс шешiм, интегралдық-
дифференциалдық диффузиялық теңдеулер жүйесi.

Бориханов М.Б.
ГЛАДКОЕ РЕШЕНИЕ СИСТЕМЫ ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНЫХ ДИФФУ-

ЗИОННЫХ УРАВНЕНИЙ С НЕЛОКАЛЬНЫМ ИСТОЧНИКОМ
В этой работе изучено локальное гладкое решение задачи Коши для системы интегро-

дифференциальных диффузионных уравнений с нелокальным нелинейным источником.
С помощью преобразования Фурье решена заданная система уравнений, построена функ-
ция Грина и приведены ее свойства. Соответственно доказано существование единствен-
ного локального решения на основе теоремы Банаха о неподвижной точке.

Ключевые слова. Существование локального решения, гладкое решение, система
интегро-дифференциальных диффузионных уравнений.
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Abstract. The existence of the solution of two-phase spherical Stefan problem with temperature de-

pendence thermal coefficients is considered. Using the similarity principle this problem is reduced to a

nonlinear ordinary differential equation, and then to a nonlinear integral equation of the Volterra type.

It is proved that the obtained operator is an abstraction type, therefore the integral equation can be

solved by the iteration method.

Keywords. Stefan problem, similarity solution, nonlinear ordinary differential equation, thermal coeffi-

cients, nonlinear integral equation.

1 Introduction

In the Stefan problem with nonlinear thermal coefficients, it is important to give attention
to the temperature dependence of the specific heat and thermal conductivity to determine the
heat process between the melting and boiling isotherms [1]. One-dimensional Stefan problem
with a thermal coefficient at a fixed face is considered in papers [2]–[4].

The process of a closure of electrical contacts is accompanied by an explosion of a micro-
asperity at the attaching point, ignition of an electrical arc and the formation of three zones,
metallic vapor zone, liquid and solid zones, which start to move simultaneously. The tem-
perature fields in all can be described by the heat equations. For the vapor zone we have

c1(T1)γ1(T1)
∂T1
∂t

=
1

r2
∂

∂r

[
λ1(T1)r

2∂T1
∂r

]
, 0 < r < α(t), t > 0, (1)

2010 Mathematics Subject Classification: 80A22, 35K05, 45D05.
Funding: The authors were supported in parts by the MES RK grant AP05133919.
c© 2020 Kazakh Mathematical Journal. All right reserved.
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for the liquid zone

c2(T2)γ2(T2)
∂T2
∂t

=
1

r2
∂

∂r

[
λ2(T2)r

2∂T2
∂r

]
, α(t) < r < β(t), t > 0, (2)

and for the solid zone

c3(T3)γ3(T3)
∂T3
∂t

=
1

r2
∂

∂r

[
λ3(T3)r

2∂T3
∂r

]
, β(t) < r <∞, t > 0. (3)

At the initial time the vapor and liquid zones collapse into a point

α(0) = β(0) = 0

and initial conditions for the temperatures are

T1(0, 0) = T2(r, 0) = T3(r, 0) = T0 = const (4)

and the arc heat source with the temperature of metallic vapor ionization Ti placed at the
point r = 0 is

T1(0, t) = Ti. (5)

Finally, the Stefan conditions should be written on the surfaces of the phase transformations:

T1(α(t), t) = T2(α(t), t) = Tb, (6)

−λ1(Tb)
∂T1(α(t), t)

∂r
= −λ2(Tb)

∂T2(α(t), t)

∂r
+ Lbγ1(Tb)

dα

dt
, (7)

T2(β(t), t) = T3(β(t), t) = Tm, (8)

−λ2(Tm)
∂T2(β(t), t)

∂r
= −λ3(Tm)

∂T3(β(t), t)

∂r
+ Lmγ2(Tm)

dβ

dt
, (9)

where T1(r, t) is temperature of vapor zone, T2(r, t) is temperature of liquid zone and T3(r, t)
is temperature of solid zone. ci(Ti), γi(Ti) and λi(Ti) are material’s density, specific heat
and thermal conductivity. Tb, Tm are boiling and melting temperature, α(t), β(t) are free
boundaries.

If the value of the heat flux entering into the solid zone from the liquid zone is small in
comparison with the value of the heat flux consumed for the phase transformation of the
solid into the liquid, then the conditions (8)–(9) transform into the one-phase conditions

T2(β(t), t) = Tm, (10)

−λ2(Tm)
∂T2(β(t), t)

∂r
= Lmγ2(Tm)

dβ

dt
, (11)
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while the temperature of the solid zone remains the same value T0 like at the initial time,
and equation (3) should be omitted.

Thus, the final version of the problem includes equations (1)–(2), (4)–(7), (10)–(11). It
should be noted that the problem is a classical Stefan problem without fitting conditions (4)
and (5) which was introduced and considered by Stefan, Lame and Clapeyron.

2 Similarity solution of the problem

To solve problem (1)–(11) we use the substitution θ(r, t) =
T (r, t)− Tm
Tb − Tm

and get the

following problem

c1(θ1)γ1(θ1)
∂θ1
∂t

=
1

r2
∂

∂r

[
λ1(θ1)r

2∂θ1
∂r

]
, 0 < r < α(t), t > 0, (12)

c2(θ2)γ2(θ2)
∂θ2
∂t

=
1

r2
∂

∂r

[
λ2(θ2)r

2∂θ2
∂r

]
, α(t) < r < β(t), t > 0, (13)

θ2(0, 0) = θ2(r, 0) = θ0 = const, α(0) = β(0) = 0, (14)

θ1(0, t) = θi (15)

θ1(α(t), t) = θ2(α(t), t) = 1, (16)

−λ1
θ1(α(t), t)

∂r
= −λ2

θ2(α(t), t)

∂r
+ Lbγb

dα

dt
, (17)

θ2(β(t), t) = 0, (18)

−λ2
θ2(β(t), t)

∂r
= Lmγm

dβ

dt
. (19)

Now we focus on to obtain similarity solution to problem (12)–(19). If we take by similarity
principle as following form

θi(r, t) = ui(η), η =
r

2α0

√
t
, i = 1, 2, (20)

and free boundaries are considered in the form α(t) = α0

√
t and β(t) = β0

√
t, then we obtain

the following free boundary problem with non-linear ordinary differential equations

[L(u1)η
2u′1]

′ + 2α2
0η

3N(u1)u
′
1 = 0, 0 < η <

1

2
, (21)

[L(u2)η
2u′2]

′ + 2α2
0η

3N(u2)u
′
2 = 0,

1

2
< η <

β0
2α0

, (22)

u1(0) = ui, (23)
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u1(1/2) = u2(1/2) = 1, (24)

−λ1
du1(1/2)

dη
= −λ2

du2(1/2)

dη
+ Lmγmα

2
0, (25)

u2(β0/2α0) = 0, (26)

−λ2
du2(β0/2α0)

dη
= Lmγmα0β0, (27)

where L(ui) = λi((Tb−Tm)ui+Tm), N(ui) = ci((Tb−Tm)ui+Tm)γi((Tb−Tm)ui+Tm), i =
1, 2. To solve the non-linear ordinary differential equation [L[ui]η

2u′i]
′ + 2α2

0η
3N(ui)u

′
i =

0, i = 1, 2, we use substitution

L(ui)η
2u′i = νi(η) (28)

and we have the following equation

ν ′i(η) + P (η, ui)νi(η) = 0, (29)

where P (η, ui) =
2α2

0ηN(ui)

L(ui)
. By solving equation (29) for i = 1, 2, we have the solutions

ν1(η) = ν1(0) exp

(
− 2α2

0

η∫
0

η
N(u1(η))

L(u1(η))
dη

)
, (30)

ν2(η) = ν2(1/2) exp

(
− 2α2

0

η∫
1/2

η
N(u2(η))

L(u2(η))
dη

)
. (31)

By making substitution (30) and (31) to (28) and using the conditions (23)–(24) and (26),
we have the following solutions

u1(n) = 1− Φ1[1/2, L(1), N(1)] + Φ1[η, L(u1), N(u1)], (32)

where Φ1[1/2, L(1), N(1)] = 1− ui and

u2(n) = 1− Φ2[η, L(u2), N(u2)]

Φ2[β0/2α0, L(0), N(0)]
, (33)

where

Φ1[η, L(u1), N(u1)] = ν1(0)

η∫
0

E1[η, u1]

v2L(u1(v))
dv,
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Φ2[η, L(u2), N(u2)] = ν2(1/2)

η∫
1/2

E2[η, u2]

v2L(u2(v))
dv,

E1[η, u1] = exp

(
− 2α2

0

η∫
0

η
N(u1)

L(u1)
dη

)
,

E2[η, u2] = exp

(
− 2α2

0

η∫
1/2

η
N(u2)

L(u2)
dη

)
.

Equations (32) and (33) satisfy problem (21)–(27). From Stefan’s condition (25) and (27) we
obtain

−4ν1(0)E1[1/2, 1] =
4ν2(1/2)E2[1/2, 1]

Φ2[β/2α0, L(0), N(0)]
+ Lbγbα

2, (34)

4α0ν2(1/2)E2[β0/2α0, 0]

Φ2[β0/2α0, L(0), N(0)]
= Lmγmβ

3
0 . (35)

The coefficients of free boundaries α(t) and β(t) can be found from the expressions (34)–(35).
In the next section, we will prove the existence of similarity solutions (32) and (33).

3 Existence of similarity solutions of the problem

To prove the existence of solutions to of the non-linear integral equations (32) and (33)
we use the fixed point theorem. We suppose that there exist constants Lm, LM , Nm and NM

which satisfy the inequalities

Lm ≤ L(T ) ≤ LM and Nm ≤ N(T ) ≤ NM . (36)

We consider that thermal conductivity and specific heat are Lipchitz functions and satisfy
the following inequality

|h(f)− h(g)| ≤ h̄||f − g|| (37)

by contraction mapping to ordinary differential equation. Let denote Φ[η, ui] ≡ Φ[η, L(ui),
N(ui)], i = 1, 2, for convenient proving. Before proving the existence of a unique solution of
similarity solutions (32)–(33) we must consider the following lemmas.

Lemma 1. If for any positive η (36) and (37) hold, then the following inequalities

1. exp

(
− α2

0NM

Lm
η2
)
≤ E1[η, u1] ≤ exp

(
− α2

0Nm

LM
η2
)
,

2. exp

(
− α2

0NM

Lm

(
η2 − 1

4

))
≤ E2[η, u2] ≤ exp

(
− α2

0Nm

LM

(
η2 − 1

4

))
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hold for η > 0.

Proof. For the second inequality we have the following prove

E2[η, u2] ≤ exp

(
− 2α2

0

Nm

LM

η∫
1/2

sds

)
= exp

(
− α2

0Nm

LM

(
η2 − 1

4

))
.

The first inequality can be proved similarly.

Lemma 2. If (36)–(37) hold, then

1. for 0 < η <
1

2
we have

ν1(0)
√
πLm

2α0LM
√
NM

erf

(
η

√
NM

Lm
α0

)
≤ Φ1[η, u1] ≤

ν1(0)
√
πLM

2α0Lm
√
Nm

erf

(
η

√
Nm

LM
α0

)
,

2. for
1

2
< η <

β0
2α0

we have

ν2(1/2)α0

√
NM

LM
√
Lm

exp

(
α2
0NM

4Lm

){√
π erf

(
α0

√
NM

2
√
Lm

)
−
√
π erf

(
α0η
√
NM

Lm

)
−
√
Lm

α0η
√
NM

exp

(
− α2

0η
2NM

Lm

)
+

2
√
Lm

α0

√
NM

exp

(
− α2

0NM

4Lm

)}
≤ Φ2[η, u2]

≤ ν2(1/2)α0

√
Nm

Lm
√
LM

exp

(
α2
0Nm

4LM

){√
π erf

(
α0

√
Nm

2
√
LM

)
−
√
π erf

(
α0η
√
Nm

LM

)
−
√
LM

α0η
√
Nm

exp

(
− α2

0η
2Nm

LM

)
+

2
√
LM

α0

√
Nm

exp

(
− α2

0Nm

4LM

)}
.

Proof. By using Lemma 1 let us try to prove the second inequality

Φ2[η, u2] ≤
ν2

(
1

2

)
Lm

η∫
1/2

1

v2
exp

(
− α2

0Nm

LM

(
v2 − 1

4

))
dv

=
ν2(1/2)

Lm
exp

(
α2
0Nm

4LM

) η∫
1/2

exp

(
− α2

0Nmv
2

LM

)
v2

dv.

After making substitution t = α0v

√
Nm

LM
and solving this integral, we finished proving the

second inequality. The one is proved analogously.
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Lemma 3. If inequalities (36)–(37) hold, then

1. for all u1, u
∗
1 ∈ C0

[
0,

1

2

]
we have

|E1[η, u1]− E1[η, u
∗
1]| ≤

α2
0

Lm
η2
(
N̄ +

NM L̄

Lm

)
||u∗1 − u1||,

2. for all u2, u
∗
2 ∈ C0

[
1

2
,
β0

2α0

]
we have

|E2[η, u2]− E2[η, u
∗
2]| ≤

α2
0

Lm

(
η2 − 1

4

)(
N̄ +

NM L̄

Lm

)
||u∗2 − u2||.

Proof. For the second inequality we have

|E2[η, u2]− E2[η, u
∗
2]| ≤

∣∣∣∣ exp

(
− 2α2

0

η∫
1
2

s
N(u2)

L(u2)
ds

)
− exp

(
− 2α2

0

η∫
1
2

s
N(u∗2)

L(u∗2)
ds

)∣∣∣∣,
by using | exp(−x)− exp(−y)| ≤ |x− y| we get

|E2[η, u2]− E2[η, u
∗
2]| ≤ 2α2

0

∣∣∣∣
η∫

1
2

s
N(u2)

L(u2)
ds−

η∫
1
2

s
N(u∗2)

L(u∗2)
ds

∣∣∣∣ ≤ 2α2
0

η∫
1
2

∣∣∣∣N(u2)

L(u2)
− N(u∗2)

L(u∗2)

∣∣∣∣sds

≤ α2
0

Lm

(
N̄ +

NM L̄

Lm

)
||u∗2 − u2||

η∫
1
2

sds =
α2
0

Lm

(
η2 − 1

4

)(
N̄ +

NM L̄

Lm

)
||u∗2 − u2||.

The first inequality is proved analogously as the second.

Lemma 4. If (36)–(37) hold, then

1. for all u1, u
∗
1 ∈ C0

[
0,

1

2

]
and 0 < η <

1

2
we get |Φ1[η, u1] − Φ2[η, u

∗
1]| ≤ ∞ as integral

defined for Φ1[η, u1] is divergent at η = 0,

2. for all u2, u
∗
2 ∈ C0

[
1

2
,
β0

2α0

]
and

1

2
< η <

β0
2α0

we get

|Φ2[η, u2]−Φ2[η, u
∗
2]| ≤

∣∣∣∣ν2(1

2

)∣∣∣∣
L2
m

||u∗2−u2||
[
α2
0

(
N̄+

NM L̄

Lm

)(
η+

1

4η
−1

)
+L̄

(
2− 1

η

)]
.
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Proof. By using Lemma 2 and Lemma 3 for the second inequality, we obtain

|Φ2[η, u2]− Φ2[η, u
∗
2]| ≤ T1(η) + T2(η),

where

T1(η) ≤

∣∣∣∣ν2(1

2

)∣∣∣∣
Lm

η∫
1
2

|E2[η, u2]− E2[η, u
∗
2]|

s2
ds

=

∣∣∣∣ν2(1

2

)∣∣∣∣α2
0

Lm

(
N̄ +

NM L̄

Lm

)
||u∗2 − u2||

η∫
1
2

s2 − 1

4
s2

ds

=

∣∣∣∣ν2(1

2

)∣∣∣∣α2
0

Lm

(
N̄ +

NM L̄

Lm

)
||u∗2 − u2||

(
η +

1

4η
− 1

)
and

T2(η) ≤
∣∣∣∣ν2(1

2

)∣∣∣∣
η∫

1
2

∣∣∣∣ 1

L(u2)
− 1

L(u∗2)

∣∣∣∣
s2

ds ≤
∣∣∣∣ν2(1

2

)∣∣∣∣
η∫

1
2

|L(u∗2)− L(u2)|
s2|L(u2)L(u∗2)|

ds

=

∣∣∣∣ν2(1

2

)∣∣∣∣L̄
L2
m

||u∗2 − u2||
η∫

1
2

ds

s2
=

∣∣∣∣ν2(1

2

)∣∣∣∣L̄
L2
m

||u∗2 − u2||
(

2− 1

η

)
.

By making summation, we can prove the second inequality. The one has an analogous proof.
Now we try to prove the theorem on the existence of a unique solution to the integral equation
(26).

Theorem 1. Let η0 be a given positive real number and suppose that (36)–(37) hold. If η0
satisfies the following inequality

σ(η0) :=

2L
3/2
M

√
Nm exp

(
α2
0Nm

4LM

)
µ1(η0)

Lmα0NM exp

(
α2
0NM

2Lm

)
[µ2(η0)]2

×||u∗2 − u2||
[
α2
0

(
N̄ +

NM L̄

Lm

)(
η0 +

1

4η0
− 1

)
+ L̄

(
2− 1

η0

)]
< 1, (38)

Kazakh Mathematical Journal, 20:1 (2020) 27–37



Two-phase spherical Stefan problem ... 35

where

µ1(η0) =
√
π erf

(
α0

2

√
Nm

LM

)
−
√
π erf

(
α0η0

√
Nm

LM

)
−

√
LM

α0η0
√
Nm

exp

(
− α2

0η
2
0NM

LM

)

+
2
√
LM

α0

√
Nm

exp

(
− α2

0Nm

4LM

)
,

µ2(η0) =
√
π erf

(
α0

2

√
NM

Lm

)
−
√
π erf

(
α0η0

√
NM

Lm

)
−

√
Lm

α0η0
√
NM

exp

(
− α2

0η
2
0Nm

Lm

)
+

2
√
Lm

α0

√
NM

exp

(
− α2

0NM

4Lm

)
,

then there exists a unique solution u2 ∈ C0

[
1

2
, η0

]
to the integral equation (33).

Proof. We have the operator W : C0

[
1

2
, η0

]
→ C0

[
1

2
, η0

]
which can be defined as

W (u2(η)) = 1− Φ2[η, L(u2)]

Φ2[η0, L(u2)]
.

The solution to equation (33) is a fixed point of the operator W , that is

W (u2(η)) = u2(η),
1

2
< η < η0.

We suppose that u2, u
∗
2 ∈ C0

[
1

2
, η0

]
, then by using Lemmas 2-4, we get

||W (u2)−W (u∗2)|| = max
η∈[0,η0]

|W (u2(η))−W (u∗2(η))|

≤ max
η∈[0,η0]

|(Φ2[η, u
∗
2]Φ2[η0, u2]− Φ2[η0, u

∗
2]Φ2[η, u2])/(Φ2[η0, u2]Φ2[η0, u

∗
2])|

≤ A max
η∈[0,η0]

|Φ2[η, u
∗
2]Φ2[η0, u2]− Φ2[η0, u

∗
2]Φ2[η, u2]|

≤ A max
η∈[0,η0]

(|Φ2[η, u
∗
2]||Φ2[η0, u2]− Φ2[η0, u

∗
2]|

+|Φ2[η0, u
∗
2]||Φ2[η, u

∗
2]− Φ2[η, u2]|),

where

A =
L2
MLm

(ν2(1/2))2α2
0NM exp

(
α2
0NM

2Lm

)
[µ(η0)]2

> 0.
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Finally, from Lemmas 3, 4 we have that

|W (u2)−W (u∗2)| ≤ σ(η0)||u∗2 − u2||.

We can see that W is a contraction operator and if the inequality (38) holds, then there
exists a unique solution for integral equation (33). The existence of a unique solution to the
integral equation (32) can also be proved similarly to Theorem 1.
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Харин С.Н., Наурыз Т.А. СЫЗЫҚТЫҚ ЕМЕС ЖЫЛУ ӨТКIЗГIШТIГI БАР ЕКI
ФАЗАЛЫҚ СФЕРАЛЫҚ СТЕФАН ЕСЕБI

Бұл мақалада температураға тәуелдi жылу коэффициенттерi бар екi фазалық сфера-
лық Стефан есебiнiң ұксастық шешiмi бар екендiгi дәлелденген. Есеп сызықтық емес жәй
дифференциалдық теңдеу үшiн еркiн шекаралық есепке келтiрiлген, содан кейiн Воль-
терра тектес сызықтық емес интегралдық теңдеуi алынады. Ұқсастық принципi балқу
мен қайнау изотермалары арасындағы шекаралары еркiн болатын сұйық және қатты
аймақтың температурасын моделдеу үшiн қолданылған.

Кiлттiк сөздер. Стефан есебi, ұқсастық шешiмi, сызықтық емес жәй дифференциал-
дық теңдеу, жылу коэффициенттерi, сызықтық емес интегралдық теңдеу.

Харин С.Н., Наурыз Т.А. ДВУХФАЗНАЯ СФЕРИЧЕСКАЯ ЗАДАЧА СТЕФАНА С
НЕЛИНЕЙНОЙ ТЕПЛОПРОВОДНОСТЬЮ

В данной работе доказано существование решения подобия двухфазной сферической
задачи Стефана с температурными зависимостями тепловых коэффициентов. Задача
сводится к задаче со свободной границей нелинейного обыкновенного дифференциаль-
ного уравнения, затем получается нелинейное интегральное уравнение типа Вольтерра.
Принцип подобия используется для моделирования температуры жидкой и твердой зон
со свободными границами между изотермами плавления и кипения.

Ключевые слова. Задача Стефана, решение подобия, нелинейное обыкновенное диф-
ференциальное уравнение, тепловые коэффициенты, нелинейное интегральное уравне-
ние.
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Abstract. The multispecies supersonic airflow in a planar channel with transverse hydrogen jet injection

is simulated. The Favre averaged Navier-Stokes equations coupled with k – ω turbulence model are

solved using a third order ENO scheme. The main attention is paid to the influence of the flow Mach

number to the interaction of the shock wave structure with boundary layers on the upper and the lower

channel walls under the conditions of an internal turbulent flow. In particular, a detailed study of the

shock wave structure, separation zones, jet penetration are investigated at the various Mach number. It

is established that the shock wave structures appearing on the upper and the lower walls and the vortex

zones resulting from the interaction of the shock wave structures with the boundary layers (SWBLI)

decrease due to an increase of the Mach number. For small values of the flow Mach number, an

additional interaction of the shock waves structures on the bottom wall behind the jet is revealed. Also

the decrease of the jet penetration with increasing Mach number is revealed and the dependencies are

obtained. The comparison with an experimental data is implemented.

Keywords. Navier-Stokes equations, supersonic flow shock wave, boundary layer, flow separation, Mach

number.

1 Introduction

The fuel-air mixing and combustion in the scramjet combustor are implemented with
supersonic speed. The jet injection in a cross-flow (JICF) leads to the formation of system
shock wave structures, where a shock wave boundary layer interaction (SWBLI) near walls of
the combustion chamber is the most complex. Such flow with injected jet has been extensively
studied as experimentally [1]–[6] and theoretically [7]–[13].
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There are a few investigations studied the influence of the effect SWBLI to the mixing
of the fuel and the airflow and the combustion as a result [14], [15]. The formed bow shock
wave (resulting from the jet and flow interaction) reaches the upper boundary layer and
causes separation of the boundary layer. Thus, formed SWBLI phenomenon on the top wall
can significantly influence on the structure of the flowfield and, as a consequence, to the
processes of mixing the jet and the flow. It should be noted that in the most of experimental
[16]–[18] and theoretical [19]–[25] works, SWBLI process is studied on the basis of interaction
of the boundary layer of a flat plate with the incident shock wave, generated by the wedge
(shock generator), i.e. the case of SWBLI during the JICF is almost not considered.

During the numerical solving some research [26]–[27] observed the flow unsteadiness
caused the intrinsic flow instabilities in flowfield which is Richtmyer-Meshkov instability in
shock-wave/shear-layer interactions. While the mixing of the airflow with the fuel and the
combustion of the mixture occurs at supersonic speeds. This is the stringent condition for the
time of the oxidant-fuel mixing and the combustion in the channel. Thus, the Mach number
is one of the important flow parameters, since in the chambers the combustion process is very
dependent on the flow speed. The analysis of the researches performed the numerical simu-
lation of supersonic multispecies gas flows shows that the detailed study of the dependence

Figure 1 – Scheme of the flow
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of the flow structures on the parameters is needed. The purpose of the present work is the
numerical simulation of a planar supersonic turbulent airflow in a channel with a transverse
injection of the hydrogen jet. The study of the interaction of a shock – wave with boundary
layers (SWBLI) on the bottom and upper walls as well as the conditions of the boundary
layer separations and their influence to the mixture of airflow and hydrogen for a broad range
of the Mach number is performed. The scheme of the flow is shown in Figure 1.

2 Problem statement

Basic equations for the stated problem are the system of two-dimensional Favre averaged
Navier-Stokes equations for multispecies gaseous mixture in Cartesian coordinate system in
conservative form as:

∂~U

∂t
+
∂
(
~E − ~Ev

)
∂x

+

(
~F − ~Fv

)
∂z

= S, (1)

where the vectors of dependent variables and vector fluxes are defined in the form

~U = (ρ, ρu, ρw,Et, ρYk, ρk, ρω)T ,

~E =
(
ρu, ρu2 + p, ρuw, (Et + p)u, ρuYk, ρuk, ρuω

)T
,

~F =
(
ρw, ρuw, ρw2 + p, (Et + p)w, ρwYk, ρwk, ρwω

)T
,

~Ev =

(
0, τxx, τxz, uτxx + wτxz − qx, Jkx,

1

Re
(µ+ σkµt)

∂k

∂x
,

1

Re
(µ+ σωµt)

∂ω

∂x

)T
,

~Fv =

(
0, τxz, τzz, uτxz + wτzz − qz, Jkz,

1

Re
(µ+ σkµt)

∂k

∂z
,

1

Re
(µ+ σωµt)

∂ω

∂z

)T
.

Viscous stress tensor components are given as

τxx =
2µ

3Re
(3ux − wz), τzz =

2µ

3Re
(3wz − ux), τxz = τzx =

µ

Re
(uz + wx).

The heat flux is defined in a form

qx =
( µ

PrRe

) ∂T
∂x

+
1

γ∞M2
∞

N∑
k=1

hkJkx, qz =
( µ

PrRe

) ∂T
∂z

+
1

γ∞M2
∞

N∑
k=1

hkJkz.

The diffusion flux is determined as

Jkx = − µ

ScRe

∂Yk
∂x

, Jkz = − µ

ScRe

∂Yk
∂z

.
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The pressure and the total energy are given as

P =
ρT

γ∞M2
∞W

, W =

 Np∑
k=1

Yk
Wk

−1, Np∑
k=1

Yk = 1,

Et =
ρ

γ∞M2
∞

N∑
k=1

Ykhk − P +
1

2
ρ(u2 + w2).

The specific enthalpy and the specific heat at a constant pressure of the kth species are

hk = h0k +

T∫
T0

cpkdT , cpk = Cpk/Wk,

where the molar specific heat is written in the polynomial form as

Cpk =
5∑
i=1

ākiT
(i−1),

where the coefficients ajk are taken from the table JANAF [28] at a normal pressure
(p = 1 atm) and temperature T 0 = 293 K.

The vector of additional terms is as follows:

~S =
(
0, 0, 0, 0, (Pk − β∗ρωk) ,

(
γ∗ρPk/µt − βρω2

))T
,

Pk = τij
∂ui
xj

, i, j = 1, 2,

σk = 0.5, σω = 0.5, β∗ = 0.09, β = 0.075, γ∗ = 5/9,

k, ω are the turbulent kinetic energy and its dissipation rate, Pk is the term defining the tur-
bulence generation, the turbulent viscosity is determined by µt = ρk

ω [29] and µl is determined
by the Sutherlend formula.

The system of equations (1) is written in non – dimensional form. The input parameters
of airflow u∞, ρ∞, T∞,W∞ are taken as reference parameters, the pressure and the total
energy are normalized by ρ∞u

2
∞, for the specific enthalpy hk are R0T∞/W∞, for the molar

specific heats Cpk are R0, and the slot width is chosen as the reference length scale. In the
mass fraction Yk k = 1 corresponds to O2, k = 2 − H2, k = 3 − N2. Wk is the molecular
weight of a component; Re, Pr, Sc,M are Reynolds, Prandtl, Schmidt and Mach numbers
respectively.
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3 The initial and boundary conditions

At the entrance, the parameters of flow are taken as

P = P∞, T = T∞, u = M∞

√
γ∞R0T∞
W∞

, w = 0, Y = Yk∞, W = Wk∞, x = 0, 0 ≤ z ≤ H,

where the boundary layer is specified near the walls in which longitudinal velocity component
is determined as

u =


0.1
(
z
δ2

)
+ 0.9

(
z
δ2

)2
, x = 0, 0 ≤ z ≤ δ2,(

z
δ1

)1/7
, x = 0, δ2 ≤ z ≤ δ1,

here δ1 = 0.37x(Rexx)−0.2 is the boundary layer thickness [30] and δ2 = 0.2δ1 is the viscous
sublayer thickness [31].

The profile of temperature and density are taken as [32]

T = TW + u (1− TW ) , ρ =
1

T
,

where TW =
(
1 + r (γ−1)2 M2

∞
)

is the temperature on the wall and r = 0.88.

On the bottom and top walls:

u = w = 0,
∂T

∂z
= 0,

∂P

∂z
= 0,

∂Yk
∂z

= 0, 0 ≤ x ≤ L, z = 0 and z = H.

In the slot:

W = Wk0, P = nP, T = T0, w = M0

√
γ0R0T0
W0

, u = 0, Y = Yk0, z = 0, Lb ≤ x ≤ Lb + d,

where Lb is the distance from the entrance to the slot, d is the width of slot, n = P0/P∞ is
the pressure ratio, M0 and M∞ are the Mach numbers of the jet and the flow respectively,
0,∞ refers to the jet and flow parameters; Hx, Hz is the length and the height of domain.
The initial conditions are taken the same as the boundary conditions at the entrance. The
non-reflection boundary conditions are specified at the outlet boundary [33].

4 Solution method

The methodology of the numerical solving the system (1) is described in [7], [8]. Nu-
merical solution of the system (1) is performed in two stages. A coordinate transformation
is preliminarily done, where a grid thickening is made in the region of high gradients. At
first stage the thermodynamic parameters ρ, u, w,Et are defined.The third order Essentially
Nonoscillatory Scheme are applied for approximation inviscid terms [34]–[36]. The central
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differences of the second order of accuracy have been used for the approximation of the sec-
ond derivatives. The obtaining system of equations is solved using the matrix sweep method
for the vector of the thermodynamic parameters. The equations of the mass fractions Yk
are similarly solved at the second stage. The temperature field is calculated from the known
values of the variables ~U using of the Newton-Raphson iterative method with the quadratic
rate of convergence [37].

5 Analysis of results

The validation of numerical model is performed by comparison between the experimental
data [2] and the numerical solution of a supersonic airflow with transverse jet injection of
nitrogen. The next parameters of the supersonic airflow are given: M∞ = 3.5, P∞ =
3145 Pa, T∞ = 309K, Y∞ O2 = 0.2, Y∞ N2 = 0.8. The nitrogen sonic jet is injected with
parameters: M∞ = 1, T0 = 292K, Y0 N2 = 1, Lb = 228.6 mm through a slot of width
d = 0.2667 mm on the bottom wall. The pressure distribution on the wall in the jet region
is defined with the pressure ratios n = 8.74 and n = 17.12. Figure 2 shows the result of
comparison with experiment for the pressure distribution on the wall near the jet. Here the
”curve” is a numerical result and ”���” are an experimental data [2]. As it is seen from
Figure 2 the good agreement is obtained for the pressure distribution parameter.

a) b)

Figure 2 – The pressure distribution on the wall in the region

of jet for pressure ratio n = 8.74 (a) and n = 17.12 (b)

The stated problem of a planar supersonic flow in channel with transverse sound jet
injection of hydrogen from the bottom wall is numerically simulated for studying the influence
of the flow Mach number on the interaction of the shock wave system and the boundary layers
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near walls. The dimensionless parameters in this case are: Hx = 90 is the channel length,
Hz = 30 is the height and the center of the jet is located at the distance of 32.5 from the
entrance. Airflow and jet parameters are: P∞ = 1000 Pa, T∞ = 800 K, Re = 106, P r =
0.9, Y∞O2 = 0.2, Y∞N2 = 0.8,M0 = 1, T0 = 627 K, Y0H2 = 1, n = 15. The boundary layer
thickness δ1 = 1.28 is computed for x = 145 and specified at the inlet section. The near-wall
layer height corresponds to the laminar-turbulent sublayer z+ = 70, where z+ = δ2uτRe, and

the boundary layer height is z+ = 3700, where z+ = δ1uτRe. Here uτ =

√
Cf

2 is the dynamic
viscosity, Cf is the flow friction coefficient on the wall. The numerical grid is 401 × 351.
The grid refinement near the wall gives the first node near the wall equal to z+ = 1.5. At
the entrance nodes 5-8 lie in the near-wall layer along the z-axis and entire boundary layer
is calculated with the use of 35-40 nodes of the numerical grid. The flow Mach number of
flowfield is varied in the range 2.5 ≤M∞ ≤ 4.5.

The isobar distribution is presented in Figure 3 (a) M∞ = 2.5, b) M∞ = 3.0, c) M∞ =
3.5, d) M∞ = 4.0, e) M∞ = 4.5). The well-known and widely represented in various papers
[7]–[9], [38] ahead of the jet shock – wave structure is visible for all values Mach number.
From Figures 3a–3e it is seen that the inclination angle of the bow shock wave 1 and size of
the λ – shape shock (which formed because intersection of the bow shock 1, oblique shock 2
and reflected shock 3) are decreased with growth of M∞. Such behavior is apparently due
to growth of incoming flow velocity. After reaching the upper wall, the bow shock 1 creates
positive pressure gradient (Figures 3a–3e), leading to the separation of the boundary layer
near upper wall, moreover, the larger the angle of inclination bow shock wave 1, the larger the
pressure gradient. From Figure 3 one can see that the supersonic part of the upper boundary
layer deviates and generates the system of converging compression wave 4, which propagates
as the reflected shock wave 5. And the secondary system of compression waves is appeared as
a result of reattachment of the separated flow to the streamlined wall, which is the reflected
shock wave 6. It is visible (Figures 3a–3e) the bow shock 1, the compression wave 4 and the
reflected shock 5 intersect at a single point and form λ – shaped system. The size of this λ –
shaped structure reduces with increasing the Mach number, and this can be observed through
comparing Figures 3a–3e. In Figure a for an additional λ – shaped structure is appeared near
bottom wall behind the jet. Shock wave 6 reaches the bottom boundary layer behind the
jet, where creates compression wave 7, which propagates in the form of shock 8. The weak
reflected shock 9 is can also be seen here.

The behavior of a flowfield for differentM∞ is demonstrated the iso – Mach line contours in
the jet injection region in Figures 4a–4e (a) M∞ = 2.5, b) M∞ = 3.0, c) M∞ = 3.5, d) M∞ =
4.0, e) M∞ = 4.5). For all cases, the sonic velocity of the jet becomes supersonic because of
the acceleration after injection and as can be observed from the Figure 4, a barrel structure
is formed. It is visible from Figures 4a–4e that the barrel-shock structure in the jet decreases
with increasing Mach number. Hence, jet penetration decreases too. It is due to the reduction
of the hydrogen momentum with respect to the incoming airflow momentum. Consequently,
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a)

b)

c)

d)

e)

Figure 3 – Distribution of isobars at various Mach

number: a) M∞ = 2.5, b) M∞ = 3.0, c) M∞ = 3.5, d) M∞ = 4.0, e) M∞ = 4.5
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a)

b)

c)

d)

e)

Figure 4 – The local Mach number contour at various Mach

number: a) M∞ = 2.5, b) M∞ = 3.0, c) M∞ = 3.5, d) M∞ = 4.0, e) M∞ = 4.5
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a)

b)

c)

d)

e)

Figure 5 – The velocity vector field profiles at various Mach

number: a) M∞ = 2.5, b) M∞ = 3.0, c) M∞ = 3.5, d) M∞ = 4.0, e) M∞ = 4.5
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a)

b)

c)

d)

e)

Figure 6 – The distribution of hydrogen mass fraction at various Mach

number: a) M∞ = 2.5, b) M∞ = 3.0, c) M∞ = 3.5, d) M∞ = 4.0, e) M∞ = 4.5
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the barrel size is diminished.

The graph of velocity vector field which is represented in Figures 5a–5e (a) M∞ =
2.5, b) M∞ = 3.0, c) M∞ = 3.5, d) M∞ = 4.0, e) M∞ = 4.5) demonstrates that the
recirculation zones ahead and behind the jet are become smaller with the growth of Mach
number. Figure 5a shows for M∞ = 2.5, besides the well-known behind the jet vorticity
zone, additional separation zone is formed on the bottom wall behind jet at the distance
45 < x < 60. This separation is due to the interaction of the shock wave 6 with the boundary
layer (SWBLI) on the bottom wall at distance x = 75. The size of separation bubble at
the upper wall is reducing and moving upstream growing Mach number. It can be noticed
comparing Figures 5a–5e that the jet penetration increases with growth of M∞. This is also
confirmed by the mass fraction of species contours shown in Figures 6a–6e. As can be seen,
this is verified by Figure 7, which presents the influence of various Mach number on the jet
penetration. The hydrogen jet penetration decreases sharply from M∞ = 2.5 to M∞ = 3.0,
then declines moderately between M∞ = 3.0 and M∞ = 4.5 (Figure 7).

Figure 7 – Effect of various Mach number on the jet penetration

6 Conclusion

The influence of the Mach number on the supersonic flow dynamics with transverse hy-
drogen jet injection is numerically studied in detail. It is revealed that inclination angle of the
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bow shock wave 1 and size of the λ – shape shock (which is formed because of the intersection
of the bow shock 1, the oblique shock 2 and the reflected shock 3) decrease with growth of
M∞. On the upper wall it is formed one more additional λ – shaped system (the bow shock 1,
the compression wave 4 and the reflected shock 5 are intersected at a single point). The size of
this λ – shaped structure reduces simultaneously with the increase of the Mach number. For
M∞ = 2.5 an additional λ – shaped structure appears near the bottom wall behind the jet
due to the shock wave 6 reaching the bottom boundary layer behind the jet, where it creates
the compression wave 7, which propagates in a form of the shock 8. Consequently all vortex
structures at the upper and the bottom walls resulting from the interaction of the shock-wave
structures with the boundary layers (SWBLI) increase with declining of the Mach number.
The additional λ – shaped structure near the bottom wall behind the jet for the Mach number
2.5 generates the additional separation zone on the lower wall at a distance x = 75. It is
received that the barrel – shock structure in the jet decreases with increasing of the Mach
number. Hence, jet penetration decreases and this is also confirmed by results of the mass
fraction of species. The influence of the Mach number on the hydrogen jet penetration is
determined. The result shows a sharply decrease in penetration from M∞ = 2.5 to M∞ = 3.0,
then with the Mach number greater than three it is declined moderately. A comparison of
computations with experimental data shows a satisfactory agreement of results.
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Аширова Г.А., Бекетаева А.О., Найманова А.Ж. СУТЕГI АҒЫНЫМЕН ҮР-
ЛЕНЕТIН ЖОҒАРЫ ДЫБЫСТЫ АУА АҒЫСЫНЫҢ MAX САНДАРЫ ӘРТҮРЛI
БОЛҒАНДАҒЫ САНДЫҚ МОДЕЛДЕУI

Көп компоненттi жоғары дыбысты газ ағысы сутегi ағыны көлденең үрленетiн тегiс
арнада моделденедi. k−ω турбуленттiк моделiмен тұйықталған Фавр бойынша орташа-
ланған Навье-Стокс теңдеулерi үшiншi реттi ENO сызбасын қолдану арқылы шешiледi.
Ағыстың Maх санының соққы толқыны құрылымының каналдың жоғарғы және төменгi
қабырғаларындағы шекаралық қабаттармен iшкi турбуленттi ағын жағдайындағы өзара
әрекеттесуiне әсер етуiне басты назар аударылады. Атап айтқанда, Maх сандары әртүр-
лi болғандағы соққы толқынының құрылымы, ажырау аймақтары, ағыстың кiрiп кетуi
егжей-тегжейлi зерттеледi. Maх санын өсiргенде жоғарғы және төменгi қабырғаларда
және құйынды аймақтарда пайда болатын, соққы толқындарының құрылымдарының
шекаралық қабаттармен (SWBLI) өзара әрекеттесуi нәтижесiнде пайда болатын соққы
толқындарының құрылымдарының азаятындығы анықталды. Ағыстың Maх санының
кiшiгiрiм мәндерi үшiн соққы толқындарының құрылымдарының ағынның сыртындағы
төменгi қабырғадағы қосымша өзара әрекеттесуi анықталды. Сондай-ақ, Мах санының
өсуi кезiнде ағыстың кiрiп кетуiнiң кемуi байқалды. Тәжiрибелiк мәлiметтермен салы-
стыру жасалды.

Kiлттiк сөздер. Навье-Стокс теңдеулерi, дыбыстан жоғары ағын, соққы толқыны,
ажырау аймағы, шекаралық қабат, Мах саны.

Аширова Г.А., Бекетаева А.О., Найманова А.Ж. ЧИСЛЕННОЕМОДЕЛИРОВАНИЕ
СВЕРХЗВУКОВОГО ПОТОКА ВОЗДУХА С ВДУВОМ СТРУИ ВОДОРОДА ПРИ
РАЗЛИЧНЫХ ЧИСЛАХ МАХА

Моделируется течение многокомпонентного сверхзвукового газа в плоском канале
с поперечным вдувом струи водорода. Решение осредненных по Фавру уравнений На-
вье–Стокса, замкнутых k – ω моделью турбулентности, осуществляются с использова-
нием схемы ENO третьего порядка. Основное внимание уделено влиянию числа Маха
потока на взаимодействие структуры ударной волны с пограничными слоями на верхней
и нижней стенках канала в условиях внутреннего турбулентного потока. В частности, де-
тально исследуются структура ударной волны, зоны отрыва, проникновение струи при
различных числах Маха. Установлено, что структуры ударных волн, возникающие на
верхней и нижней стенках и вихревых зонах, возникающие в результате взаимодействия
структур ударных волн с пограничными слоями (SWBLI), уменьшаются при увеличе-
нии числа Маха. При малых значениях числа Маха потока обнаружено дополнительное
взаимодействие структур ударных волн на нижней стенке за струей. Также обнаружено
уменьшение проникновения струи с увеличением числа Маха. Проведено сравнение с
экспериментальными данными.

Ключевые слова. Уравнения Навье–Стокса, сверзвуковое течение, ударная волна, от-
рывная зона, пограничный слой, число Маха.
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Abstract. We approximate the microscopic Maxwell boundary condition for one-dimensional Boltz-

mann equation when some of molecules are reflected from the surface specularly and some diffusely

with Maxwell distribution. We formulate the mixed value problem for the first and third moments

of Boltzmann system of equations with macroscopic boundary conditions. We prove the existence

and uniqueness of the solution of mixed value problem for one-dimensional nonlinear nonstationary

Boltzmann moment system of equations in first and third approximations with macroscopic boundary

conditions at in space of functions continuous in time and summable in square by spatial variable.

Keywords. Boltzmann moment system of equations, microscopic Maxwell boundary condition, macro-

scopic boundary conditions.

1 Introduction

Many problems of rarefied gas dynamics require solving problems for Boltzmann equation.
Prediction of the aerodynamic characteristics of aircraft at very high speeds and at high alti-
tudes is an important problem in aerospace engineering. In case of a gas flow near a solid body
or inside a region bounded by a solid surface, the boundary conditions describe the interaction
of gas molecules with solid walls. Unfortunately, it is almost impossible to conduct experi-
ments to study the interaction of gas with a surface at very high speeds and at high altitudes.
The aerodynamic characteristics of aircraft at very high speeds and at high altitudes can be
determined by the methods of the theory of rarefied gas [1]. For analyzing aerodynamic char-
acteristics of aircraft in transient regime the complete integro-differential Boltzmann equation
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is used with appropriate boundary conditions. Determination of the boundary conditions on
surfaces that are streamlined with rarefied gas is one of the most important questions of the
in kinetic theory of gases. In high-altitude aerodynamics the interaction of gas with surface
of a streamlined body plays an important role [2]. The aerothermodynamic characteristics
of bodies in a gas flow are determined by transfer of momentum and energy to the surface
of the body, that is, the relationship between velocities and energies of molecules incident
on the surface and molecules reflected from it, which is the essence of the kinetic boundary
conditions on the surface. Maxwell boundary condition for solving specific problems more
accurately describes the interaction of gas molecules with the surface. One of the approxi-
mate methods for solving the initial-boundary value problem for Boltzmann equation is the
moment method. Using this method, it becomes possible to determine the aerodynamic char-
acteristics of aircraft such as atmospheric parameters, flight speed, geometric parameters, and
like that. In the work [3], two new models of boundary conditions were proposed: diffusive-
moment and mirror-moment, generalizing the known boundary conditions of Cherchinyani;
in work [4], the aerodynamic characteristics of space vehicles were studied by the method of
direct static modeling (Monte Carlo method) and various models of the interaction of gas
molecules with a surface and their effect on aerodynamic characteristic. Moment methods
are the different from each other as sets of various systems of basis functions. For example,
Grad in works [5] and [6] obtained a moment system through decomposition of particles dis-
tribution function by Hermitte polynomials near the local Maxwell distributions. Grad used
Cartesian coordinates of velocities and his moment system contained unknown hydrodynamic
characteristics such as density, temperature, average speed, etc. In work [7] we obtained mo-
ment system which differs from Grad’s system of equations. We used spherical coordinates of
velocity and distribution function was decomposed into series by eigenfunctions of linearized
collision operator [1], [8], which is the product of Sonin polynomials and spherical functions.
The expansion coefficients, the moments of distribution function are defined differently from
Grad. The resulting system of equations corresponding to a partial sum of series, which we
call Boltzmann moment system of equations, is nonlinear hyperbolic system relative to the
moments of particles distribution function. Differential part of the resulting system is linear
and quadratic nonlinearity has the form of moments of a distribution function. Quadratic
forms, that is the moments of nonlinear collision ingerals, are calculated in [9] and are ex-
pressed in terms of coefficients of Talmi [10] and Klebsh-Gordon [11].

In the works [12]–[13] there were obtained moment systems for spatially homogeneous
Boltzmann equation and conditions for representability of the solution of spatially homo-
geneous Boltzmann equation in the form of Poincaré series. The method proposed in [12]
(application of Fourier transform with respect to velocity variable in isotropic case) greatly
simplified the collision integral and, hence, calculation of moments from of collision integral.
In work [13] the results of [12] were generalized for in case of anisotropic scattering.

Levermore C.D. in the work [14] presented systematic nonperturbative derivation of hi-
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erarchy of closed systems of moment equations corresponding to any classical theory. This
paper is a fundamental work where in which closed systems of moment equations describe
the transition regime.

The Boltzmann equation is equivalent to an infinite system of differential equations for
the moments of the particle distribution function in the complete system of eigenfunctions
of linearized operator. As a rule, we limit study to the finite moment system of equations as
solving the infinite system of equations is not possible.

The finite system of moment equations for a specific task with a certain degree of ac-
curacy replaces the Boltzmann equation. It is necessary, also roughly, to replace boundary
conditions for the particle distribution function by a number of macroscopic conditions for
moments, i.e. there arises a problem of boundary conditions for a finite system of equations
that approximate microscopic boundary conditions for the Boltzmann equation. The prob-
lem of boundary conditions for a finite system of moment equations can be divided into two
parts: how many conditions must be imposed and how they should be prepared. From micro-
scopic boundary conditions for the Boltzmann equation there can be obtained an infinite set
of boundary conditions for each type of decomposition. However, the number of boundary
conditions is not determined by the number of moment equations, i.e. it is impossible to take
as many boundary conditions as equations, although the number of moment equations affect
the number of boundary conditions. In addition, the boundary conditions must be consistent
with moment equations and the resulting problem must be correct.

Grad in [5] described the construction of an infinite sequence of boundary conditions
without consent of the order of approximation for decomposition of boundary conditions
and expansion of the Boltzmann equation. Construction of boundary conditions (even one-
dimensional Grad’s moment system of equations) is a difficult task as Grad’s moment system
of equations is a hyperbolic system and this system contains unknown parameters for co-
efficients, such as density, temperature, average speed, etc. In this case, the characteristic
equation also depends on unknown parameters and it appears to be difficult to formulate
the boundary conditions for the moment system. In the work [15] there were discussed the
boundary conditions for the 13-moment Grad system.

In the work [7] we showed approximation of homogeneous boundary condition for par-
ticle distribution function and proved the correctness of the initial-boundary value problem
for nonstationary nonlinear Boltzmann moment system of equations in three-dimensional
space. More precisely, we proved the existence of a unique generalized solution for the initial-
boundary value problem for Boltzmann moment system of equations in the space of functions
continuous in time and summable by square in the space of variables. In addition, an ap-
proximation of microscopic boundary condition for three-dimensional Boltzmann equation
was given. The boundary condition is given in a form of integral relation between particles
incident on the boundary of particles and reflected from the boundary of particles.

The boundary condition can be formulated as follows: determine the mirrored half of
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the distribution function from the known half, corresponding to the incident particles. The
boundary condition is specified as an integral relation between particles incident on the
boundary and particles reflected from the boundary (assuming that we know the probability
of an event that a particle incident on the boundary with velocity vi is reflected with velocity
vr).

However, in practice, the fluxes of particles incident on boundary and reflected from it
are determined by numerically solving the corresponding mixed problem for various approxi-
mations of Boltzmann moment system of equations. Therefore, the study of mixed problems
for moment equations is an urgent and important problem of the in dynamics of a rarefied
gas.

In this work, we give an approximation of the microscopic boundary condition when part
of molecules is reflected from the surface specularly and part is diffused by the Maxwell dis-
tribution. For this case, macroscopic boundary conditions for two-moment and six-moment
system of equations were obtained from microscopic Maxwell boundary conditions. Let us
prove the existence of a unique solution of the mixed value problem for one-dimensional Boltz-
mann moment system of equations in the first and third approximations (two-moment and
six-moment system of equations) in the space of functions continuous in time and summable
in square by spatial variable.

2 Investigation of the existence and uniqueness of solution of mixed value
problem for non-stationary nonlinear one-dimensional system of Boltzmann mo-
ment system of equations in the first and third approximations under macroscopic
Maxwell boundary conditions

In case of gas flow inside a region bounded by a closed or open surface, or near a solid body,
the boundary conditions are specified in the form of ratio between particles incident on the
boundary and reflected from it. If the initial distribution of gas molecules is known, then the
further evolution of the gas is described by the Boltzmann integro-differential equation. So,
the problem reduces to solving initial-boundary value problem for the Boltzmann equation.
Here we show the formulation of the initial-boundary value problem for the one-dimensional
Boltzmann equation under Maxwell boundary conditions without going into details of interac-
tion of gas with wall. We will approximate initial-boundary value problem for the Boltzmann
equation by the corresponding problem for the system of Boltzmann moment equations in
first and third approximations and show the correctness of the obtained problems.

We note that Mischler S. in work [16] proved a theorem on the existence of a global
solution to the initial-boundary value problem for the 3-dimensional nonlinear Boltzmann
equation under the Maxwell boundary conditions.
Statement of the problem. Find a solution to the initial-boundary value problem for a
homogeneous one-dimensional Boltzmann equation

∂f

∂t
+ |v| cos θ

∂f

∂x
= J(f, f), t ∈ (0, T ], x ∈ (−a, a), v ∈ Rv3, (1)
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f |t=0 = f0(x, v), (x, v) ∈ [−a, a]×Rv3, (2)

f+(t, x, v1, v2, v3) = βf−(t, x, v1, v2,−v3) + (1− β)η exp
(
− |v|

2

2RT0

)
,

v3 = |v| cos θ, (n, v) = (n, |v| cos θ) > 0, x = −a or x = a, (3)

where f ≡ f(t, x, v) is a particle distribution function in the space of velocity and
time; f0(x, v) is a distribution of particles at the initial time (fixed function); J(f, f) ≡∫

[f(v′)f(w′)− f(v)f(w)]σ(cosx)dwdε is a nonlinear collision operator recorded for Maxwell
molecules, n is unit external normal vector of boundary, v, w(v′, w′) are velocities of particles
before (after) a collision; θ is the angle between v and x axis.

The condition (3) is a natural boundary condition for the Boltzmann equation, which
makes it possible to determine the reflected half of distribution function f , if we know the
half corresponding to the incident particles. According to (3) some of the incident particles
are reflected specularly and others are absorbed by the wall and emitted with a Maxwell
distribution with the corresponding wall temperature T0.

Formula (3) refers to the case of wall at rest; otherwise v must be replaced by v − u0, u0
being the velocity of wall. β, T0, u0 may vary from point to point and with time [8].

For one-dimensional problem eigenfunctions of linearized operator are [1], [8]:

gnl(αv) =

( √
πn!(2l + 1)

2Γ(n+ l + 3/2)

)1/2(α|v|√
2

)l
Sl+1/2
n

(
α2|v|2

2

)
Pl(cos θ), 2n+ l = 0, 1, 2, ... ,

where S
l+1/2
n

(α2|v|2
2

)
are Sonin polynomials, Pl(cos θ) are Legendre polynomials, Γ is Gamma

function.
To find an approximate solution of problem (1)–(3) we apply the Galerkin method. We

define an approximate solution to problem (1)–(3) as follows:

f2N+1(t, x, v) =
2N+1∑
2n+l=0

fnl(t, x)gnl(αv), (4)

∫
Rv

3

(
∂f2N+1

∂t
+ |v| cos θ

∂f2N+1

∂x
− J(f2N+1, f2N+1)

)
f0(α|v|)gnl(αv)dv = 0, (5)

2n+ l = 0, 1, ..., 2N + 1, (t, x) ∈ (0, T ]× (−a, a),∫
Rv

3

[f2N+1(0, x, v)−f02N+1(x, v)]f0(α|v|)gnl(αv)dv = 0, 2n+l = 0, 1, ..., 2N+1, x∈(−a, a), (6)

∫
(n,v)>0

(n, v)f0(α|v|)f+2N+1(t, x, v)gn,2l(αv)dv−β
∫

(n,v)<0

(n,−v)f0(α|v|)f−2N+1(t, x, v)gn,2l(αv)dv
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−(1− β)

∫
(n,v)<0

(n,−v)f0(α|v|) exp

(
− |v|

2

2RT0

)
gn,2l(αv)dv = 0, (7)

2(n+ l) = 0, 2, ..., 2N, x = −a or x = a,

where n = (0, 0, 1) with x = a and n = (0, 0,−1) with x = −a;

f0(α|v|) =

(
α2

2π

)3/2

exp

(
− α2v2

2

)
is a global Maxwell distribution, α2 = 1

RT0
;

fnl(t, x) =

∫
Rv

3

f2N+1(t, x, v)f0(α|v|)gnl(αv)dv,

f02N+1(x, v) =

2N+1∑
2n+l=0

f0nl(x)gnl(αv)dv,

f0nl(x) =

∫
Rv

3

f02N+1(x, v)f0(α|v|)gnl(αv)dv. (8)

In general, the approximation of the boundary condition (3) depends on the parity or
oddness of approximation of the Boltzmann moment system of equations [17]. In approxi-
mating the microscopic boundary condition we took into account the approximation of the
Boltzmann equation by the moment equations corresponding to the odd approximation of the
Boltzmann moment system of equations. Thus, the approximation orders for the expansion
of the boundary condition and the expansion of the Boltzmann equation are consistent. The
macroscopic conditions (7) we called the Maxwell boundary conditions [17].

The Boltzmann system of moment equations (5) corresponding to decomposition (4) can
be written in extended form:

∂fnl
∂t

+
1

α

∂

∂x

[
l

(√
2(n+ l + 1/2)

(2l − 1)(2l + 1)
fn,l−1 −

√
2(n+ 1)

(2l − 1)(2l + 1)
fn+1,l−1

)

+(l + 1)

(√
2(n+ l + 3/2)

(2l + 1)(2l + 3)
fn,l+1 −

√
2n

(2l + 1)(2l + 3)
fn−1,l+1

)]
= Inl, (9)

2n+ l = 0, 1, . . . , 2N + 1,
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where the moments of collision integral can be expressed in terms of coefficients of Talmi and
Klebsh-Gordon as follows [6]:

Inl =
∑
〈N3L3n3l3 : l|nl00 : l〉〈N3L3n3l3 : l|n1l1n2l2 : l〉(l10l20/l0)(σl3 − σ0)fn1l1fn2l2 ,

〈N3L3n3l3 : l|n1l1n2l2 : l〉 are generalized Talmi coefficients, (l10l20/l0) are Klebsh-Gordon
coefficients. In this formula summation is carried out over all repeating indices N3L3n3l3, n1l1
n2l2, and they take a number of values which determined from the following restrictions:

1. energy conservation law 2n1 + l1 + 2n2 + l2 = 2N3 + L3 + 2n3 + l3;

2. parity conservation law (−1)l1+l2 = (−1)L3+l3 .

A program was also compiled for calculating the values of Talmi coefficients. If in (9)
2n+l takes values from 0 to 1, then we obtain the following system of equations corresponding
to the first approximation of the Boltzmann moment system of equations or the two-moment
system of the Boltzmann equations

∂f00
∂t

+
1

α

∂f01
∂x

= 0,

∂f01
∂t

+
1

α

∂

∂x
(f00) = 0. (10)

We introduce the following designations: u = f00, w = f01, A = 1
α(1), B = 1

α
√
π

(
√

2).

Here, a mixed value problem for two-moment system of Boltzmann equations under the
Maxwell boundary conditions is formulated. Find a solution to the system of equations

∂u

∂t
+A

∂ω

∂x
= 0,

∂u

∂t
+A′

∂u

∂x
= 0, t ∈ (0, T ], x ∈ (−a, a), (11)

satisfying the following initial condition

u|t=0 = u0(x), ω|t=0 = ω0(x), x ∈ (−a, a), (12)

and boundary conditions

(Aw+ −Bu+)|x=−a = β(Aw− +Bu−)|x=−a +
1

α
√
π

(1− β)F, t ∈ [0, T ], (13)

(Aw+ +Bu+)|x=a = β(Aw− −Bu−)|x=a +
1

α
√
π

(1− β)F, t ∈ [0, T ], (14)

where u0(x), w0(x) are given functions, F = 1
4
√
2
.
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Problem (11)–(14) represents a linear hyperbolic system of equations regarding u,w.
Similarly, if in (9) 2n + l takes values from 0 to 3, then we obtain the following system

of equations corresponding to the third approximation of the Boltzmann moment system of
equations or the six-moment system of Boltzmann equations

∂f00
∂t

+
1

α

∂f01
∂x

= 0,

∂f02
∂t

+
1

α

∂

∂x

(
2√
3
f01 +

3√
5
f03 −

2
√

2√
15
f11

)
= J02,

∂f10
∂t

+
1

α

∂

∂x

(
−
√

2

3
f01 +

√
5

3
f11

)
= 0,

∂f01
∂t

+
1

α

∂

∂x

(
f00 +

2√
3
f02 −

√
2

3
f10

)
= 0,

∂f03
∂t

+
1

α

∂

∂x

3√
5
f02 = J03,

∂f11
∂t

+
1

α

∂

∂x

(
− 2
√

2√
15
f02 +

√
5

3
f10

)
= J11, x ∈ (−a, a), t > 0, (15)

where f00 = f00(t, x), f01 = f01(t, x), . . . , f11 = f11(t, x) are moments of particle distribution
function;

J02 = (σ2 − σ0)(f00f02 − f201/
√

3)/2,

J03 =
1

4
(σ3 + 3σ1 − 4σ0)f00f03 +

1

4
√

5
(2σ1 + σ0 − 3σ3)f01f02,

J11 = (σ1 − σ0)(f00f01 +
1

2

√
5

3
f10f01 −

√
2√
15
f01f02

are the moments of collision integral, where σ0, σ1, σ2, σ3 are constants.
The mixed value problem for the Boltzmann six-moment system of equations under the

Maxwell boundary conditions is as follows: find solution to the system of equations

∂u

∂t
+A

∂ω

∂x
= J1(u, ω),

∂u

∂t
+A′

∂u

∂x
= J2(u, ω), x ∈ (−a, a), (16)

satisfying the following initial condition

u|t=0 = u0(x), ω|t=0 = ω0x), x ∈ (−a, a), (17)
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and boundary conditions

(Aw+ −Bu+)|x=−a = β(Aw− +Bu−)|x=−a +
1

α
√
π

(1− β)F, t ∈ [0, T ], (18)

(Aw+ +Bu+)|x=a = β(Aw− −Bu−)|x=a +
1

α
√
π

(1− β)F, t ∈ [0, T ], (19)

where

A =
1

α


1 0 0
2√
3

3√
5
−2
√
2√

15

−
√

2
3 0

√
5
3

, B =
1

α
√
π


√

2
√

2
3 − 1√

3√
2
3 2

√
2 −1

− 1√
3
−1 3

√
2

,
J1(u,w) = (0, J02, 0)′, J2(u,w) = (0, J03, J11)

′,

u = (f00, f02, f10)
′, w = (f01, f03, f11)

′, F =

(
1

4
√
2
; 1
8
√
6
; 1
8
√
3

)
′, A′ is a transposed matrix, B

is a positive defined matrix; u0(x) = (f000(x), f002(x), f010(x))′, w0(x) = (f001(x), f003(x), f011(x))′

are given initial vector functions; w+, u+ are the moments of incident on the boundary particle
distribution function, w−, u− are moments of distribution function of particles reflected from
the boundary. (16) is a vector matrix form recording of the system of equations (15).

Due to the cumbersome computations, we omit the derivation of the boundary conditions
(13)–(14) and (18)–(19) and rationale for the number of boundary conditions is given in
conclusion.

We prove the following theorem.

Theorem 1. If U0 = (u0(x), w0(x)) ∈ L2[−a, a], then problem (11)–(14) has a unique
solution in domain [−a, a]× [0, T ], belonging to the space C([0, T ];L2[−a, a]), moreover

‖U‖C([0;T ];L2[−a,a]) ≤ C1(‖U0‖L2[−a,a] + ‖f‖C([0;T ];L2[−a,a]), (20)

where C1 is a constant independent of U , function f will be defined below.

Proof. Let U0 ∈ L2[−a, a]. Let us prove estimation (20). We multiply the first equation of
the system (11) by u and the second equation by w, and integrate from −a to a :

1

2

d

dt

a∫
−a

[(u, u) + (w,w)]dx+

a∫
−a

[
(A
∂w

∂x
, u) + (A′

∂u

∂x
,w)
]
dx = 0.

After integration by parts we obtain

1

2

d

dt

a∫
−a

[(u, u) + (w,w)]dx+ (u−, Aw−)|x=a − (u−, Aw−)|x=−a = 0. (21)
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Taking into account the boundary conditions (13)–(14) we rewrite equality (21) in the
following form

1

2

d

dt

a∫
−a

[(u, u) + (w,w)]dx+ (Bu−, u−)|x=a + (Bu−, u−)|x=−a −
1

β
((Aw+ −Bu+), u−)|x=−a

+
1

β
((Aw+ +Bu+), u−)|x=a + (F1, u

−)|x=a + (F1, u
−)|x=−a = 0, (22)

where F1 = (1−β)η
αβ
√
π
F.

Let us use spherical representation [18] of the vector U(t, x) = r(t)ω(t, x), where

ω(t, x) = (ω1(t, x), ω2(t, x))′, r(t) = ‖U(t, .)‖L2[−a,a], ‖ω‖L2[−a,a] = 1.

Substituting values u = r(t)ω1(t, x), w = r(t)ω2(t, x) into (22), we have that

dr

dt
+ rP (t) = −f(t), (23)

where
P (t) = (Bω−1 , ω

−
1 )|x=a + (Bω−1 , ω

−
1 )|x=−a

+
1

β
[(Aω+

2 , ω
−
1 )|x=a + (Bω+

1 , ω
−
1 )|x=a + (Bω+

1 , ω
−
1 )|x=−a − (Aω+

2 , ω
−
1 )|x=−a],

f(t) = (F1, ω
−
1 )|x=a + (F1, ω

−
1 )|x=−a.

Let us study equation (23) with the initial condition

r(0) = ‖U0‖ = ‖U0‖L2[−a,a]. (24)

The solution of problem (23)–(24) has following form

r(t) = exp
(
−

t∫
0

P (τ)dτ
)[
‖U0‖ −

t∫
0

f(τ)exp
(
−

τ∫
0

P (ξ)dξ
)
dτ
]
. (25)

In equality (25) integrand f(τ)exp(−
τ∫
0

P (ξ)dξ) is bounded. Therefore, ∀t ∈ [0, T ] apriori

estimation (20) is valid, where T is any bounded real number. We can prove existence of the
solution to of the problem (11)–(14) by Galerkin method. The uniqueness of the solution to
the of problem (11)–(14) followed from apriori estimation (20).

Theorem is proved.
For problem (16)–(19) the following theorem takes place [19].
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Theorem 2. If U0 = (u0(x), w0(x)) ∈ L2[−a, a], then problem (15)–(19) has a unique
solution in the domain [−a, a]× [0, T ], belonging to the space C([0, T ];L2[−a, a]), moreover

‖‖U‖L2[−a,a] − r1‖C([0;T ];L2[−a,a]) ≤ C2(‖U0‖L2[−a,a] − r1(0)), (26)

where C2 is a constant independent of U and T ∼ O(‖U0‖L2[−a,a] − r1(0))−1), r1(t) is a

partial solution of the Riccati equation dr
dt +rP (t) = r2Q(t)−f(t), P (t), Q(t), f(t) are given

functions.
For proving this theorem the methods of apriori estimation, Galerkin method and Tartar’s

compactness compensated method were used [20]. This theorem describes the existence and
uniqueness of a local on time solution to the of initial-boundary value problem (16)–(19).

3 Conclusion

1. The system of equations (11) contains two equations corresponding to the laws of
conservation of mass and momentum, and represents a linear hyperbolic system of equations

regarding u,w. Matrix

(
0 1
1 0

)
has two eigenvalues λ1 = −1, λ2 = 1. Therefore, for cor-

recting the problem two boundary conditions must be specified – one boundary condition with
outgoing characteristic and the other one for incoming characteristic. For initial-boundary
value problem two boundary conditions (13) and (14) are specified, which correspond to the

number of eigenvalues of matrix

(
0 1
1 0

)
. In Theorem 1 the existence of global in time

solution for the initial-boundary value problem (11)–(14).
2. System (16) is a symmetric hyperbolic nonlinear system of partial differential equations.

Indeed, direct calculations show that

detA1 = det

(
0 A
A′ 0

)
6= 0

and matrix A1 has three positive and the same number of negative nonzero eigenvalues,

namely −
√

(3 +
√

6),−1,−
√

(3−
√

6),
√

(3−
√

6), 1,
√

(3 +
√

6). It follows from (18)–(19),

that the number of boundary conditions on the at left and right ends of the interval (−a, a)
are equal to the number of positive and negative eigenvalues of matrix A1. Theorem 2 claims
the existence of a unique local on time solution for problem (16)–(19), since the length of
time during on which there is the solution to the of problem (16)–(19) the depends on the
difference in norm of the initial vector function and value of a particular solution of the
Riccati equation at the initial time in degree −1.

3. The moments f00, f01, f10 are expressed by macroscopic characteristics of gas such as
density, average speed and temperature. More exactly, we have following equalities

f00 = ρ, f01 = αρV, f10 =

√
3

2
ρ−

√
2

3
α2ρ

(3

2
kθ +

1

2
V 2
)
,
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where ρ is a density of gas, V is an average speed of gas, θ is a temperature of gas and α is
a constant (in special case α = 1). Moreover, we have the following equality

f00 +
2√
3
f02 −

√
2

3
f10 = α(P33 + ρV 2),

where P33 is a component of a stress tensor.
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Аужани Е., Сакабеков А.С. БОЛЬЦМАН МОМЕНТТIК ТЕҢДЕУЛЕРIНIҢ СТАЦИ-
ОНАР ЕМЕС БIР ӨЛШЕМДI БЕЙСЫЗЫҚ ЖҮЙЕСI ҮШIН МАКРОСКОПИЯЛЫҚ
ШЕКАРАЛЫҚ ШАРТТАРЫ БАР БIРIНШI ЖӘНЕ ҮШIНШI ЖУЫҚТАУЛАРДАҒЫ
АРАЛАС ЕСЕБI

Жұмыста бiр өлшемдi Больцман теңдеуi үшiн микроскопиялық Максвелл шекаралық
шарты аппроксимацияланады, мұнда молекулалардың бiр бөлiгi беттен айналы шағы-
лысса, ал қалған бөлiгi Максвелл үлестирiмдiлiгi бойынша диффузиялы шағылысады.
Бiр өлшемдi бейсызық стационар емес Больцман теңдеулерiнiң жүйесiнiң бiрiншi және
үшiншi жуықтаулары үшiн макроскопиялық шекаралық шарты бар аралас есеп тұжы-
рымдалған. Бiр өлшемдi бейсызық стационар емес Больцман теңдеулерiнiң жүйесiнiң
бiрiншi және үшiншi жуықтаулары үшiн макроскопиялық шекаралық шарты бар ара-
лас есептiң уақыт айнымалысы бойынша үзiлiссiз, ал кеңiстiктiк айнымалысы бойынша
квадрат қосындылынатын функциялар кеңiстiгiнде шешiмiнiң бар екендiгi және жалғы-
здығы дәлелденген.

Кiлттiк сөздер. Больцман моменттiк теңдеулерiнiң жүйесi, Максвелл микроскопия-
лық шекаралық шарты, макроскопиялық шекаралық шарт.

Аужани Е., Сакабеков А.С. СМЕШАННАЯ ЗАДАЧА ДЛЯ НЕСТАЦИОНАРНОЙ
НЕЛИНЕЙНОЙ ОДНОМЕРНОЙ СИСТЕМЫ МОМЕНТНЫХ УРАВНЕНИЙ БОЛЬЦ-
МАНА В ПЕРВОМ И ТРЕТЬЕМ ПРИБЛИЖЕНИЯХ С МАКРОСКОПИЧЕСКИМИ
ГРАНИЧНЫМИ УСЛОВИЯМИ

В работе мы аппроксимируем микроскопическое граничное условие Максвелла для
одномерного уравнения Больцмана, когда часть молекул отражается от поверхности
зеркально, а часть диффузионно по Максвелловскому распределению. Сформулирована
смешанная задача для первого и третьего приближений систем уравнения Больцмана с
макроскопическими граничными условиями. Доказаны существование и единственность
решения смешанной задачи для одномерной нелинейно нестационарной системы урав-
нений Больцмана в первом и третьем приближениях при макроскопических граничных
условиях в пространстве функций, непрерывных по времени и суммируемых в квадрате
по пространственной переменной.

Ключевые слова. Система моментных уравнений Больцмана, микроскопическое гра-
ничное условие Максвелла, макроскопическое граничное условие.
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Abstract. The paper is devoted to problems of solvability of nonlinear heat conduction problem in a

degenerating non-rectangular domain in Sobolev classes, the degeneration point of which located at the

origin. By using methods of a priori estimates and Faedo-Galerkin method, we prove theorems on the

existence and uniqueness of the solution for the boundary value problem under consideration, and also

for the one-dimensional boundary problem we prove its regularity with increasing smoothness of given

functions. We also obtained further development of these results for the multidimensional version (in

a multidimensional cone with a degeneration point at the vertex of the cone) of the boundary value

problems under consideration. Here it have also been shown the existence and uniqueness, but of a

weaker solution than in one-dimensional case.

Keywords. Second-order parabolic equations, nonlinear parabolic equations.

1 Introduction

The range of application of boundary value problems for parabolic equations in a domain
with a boundary that changes over time is quite wide. Such problems arise in the study
of thermal processes in electrical contacts [1], the processes of ecology and medicine [2], in
solving some problems of hydromechanics [3], thermomechanics in thermal shock [4] and so
on.

Extensive literature is devoted to the study of the solvability of linear and nonlinear
equations in cylindrical domains. However, as for nonlinear boundary value problems in
degenerating non-cylindrical domains, they have been studied relatively little.
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In the works [5] and [6], the solvability of boundary value problems for Burgers equation
in the non-rectangular domain was investigated. In the first work [5], it is required that the
domain (non-degenerated domain) can be transformed into a rectangular domain by regular
replacement of (independent) variables; in the second work [6], this requirement is excluded
(the domain of independent variables degenerates at the initial moment of time). On the
basis of the results of the work [7] in Sobolev spaces, the existence and uniqueness of the
regular solution of the considered boundary problems are established by the methods of a
Faedo-Galerkin and a priori estimates.

In [8] and [9] we show that homogeneous boundary value problems for one nonlinear
equation and Burgers equation in the (degenerating) angular domain along with the zero
solution have non-zero solutions. In [10] we have studied various cases of inhomogeneity at
the boundary. In these cases, it is shown that for the corresponding boundary value problems
there are both unique solvability and non-unique solvability.

In this paper, in Sobolev classes we study the solvability of a nonlinear equation with
homogeneous Dirichlet boundary conditions in a degenerating non-rectangular domain rep-
resented by a triangle, one of the corners of which is located at the origin and is a point of
degeneracy. In Section 1, we give a statement of the boundary value problem under study,
which in Section 2 is transformed by one-to-one nonlinear substitution for an unknown func-
tion to a linear boundary value problem in a degenerating triangular domain. In Section
3, for the linear boundary value problem we collate a family of boundary value problems in
non-degenerated quadrangular domains represented by the corresponding trapezoids. Here,
this family of boundary-value problems is transformed by the replacement of independent
variables into the corresponding family of boundary-value problems in rectangular domains,
and also here a number of theorems are formulated on their unique solvability. In Section 4,
a priori estimates for the solution of boundary value problems in trapezoids are established.
In the same Section, the main results of the work are formulated in the form of two theorems
for linear and initial nonlinear boundary value problems in a degenerating triangular domain.
The proofs of these theorems are given in Sections 5 and 6.

These results in Sections 7–11 are further developed for a multidimensional version of the
boundary value of problems under consideration. Here it have also been shown the existence
and uniqueness, but of a weaker solution than in the previous sections. It is not yet possible
to show the regularity of the weak solution. The work concludes with a brief conclusion.

1 Statement of the boundary value problem

Let Qxt1 = {x, t1 | 0 < x < t1, 0 < t1 < T1 < ∞} be a triangular domain, one of the
vertices of which is located at the origin, and also let Ωt1 be a section of the domain Qxt1
for a fixed time variable t1 ∈ (0, T1). In the domain Qxt1 we consider the following boundary
value problem:

∂t1u− ν∂2
xu+ (∂xu)2 = f, (ν > 0), (1)
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u(x, t1)|x=0 = 0, u(x, t1)|x=t1 = 0, (2)

where

f ∈ L∞(Qxt1), f ≥ 0. (3)

In this paper, we study the question of the existence and uniqueness of a solution for
boundary value problem (1)–(3) in Sobolev space (throughout the work, the space designa-
tions correspond to those accepted in the book [11]):

u ∈ H2,1
0 (Qxt1) ≡ L2(0, T1;H2(0, t1) ∩H1

0 (0, t1)) ∩H1(0, T1;L2(0, t1)). (4)

2 Converting (1)–(3) to a linear boundary value problem

We transform (1)–(3) to a linear boundary value problem for an unknown function
w(x, t1). Using the following one-to-one transformation:

w(x, t1) = exp {−u/ν} − 1, u = −ν ln(w + 1), (5)

we obtain

∂t1w − ν∂2
xw + fνw = −fν , (6)

w(x, t1)|x=0 = 0, w(x, t1)|x=t1 = 0, (7)

fν ≡ f/ν ∈ L∞(Qxt1), fν ≥ 0. (8)

3 On a family of auxiliary boundary value problems in quadrangular domains
(in the form of trapezoids)

For problem (6)–(8), we set a family of the boundary value problems, each of which is
considered in the domain representing by the corresponding trapezoid.

So, let n ∈ N∗ ≡ {n ∈ N : n ≥ n1, 1/n1 < T1}, Qnxt1 = {x, t1 : 0 < x < t1, 1/n < t1 <
T1 < ∞} be a trapezoid, and let Ωxt1 be a section at fixed t1 ∈ (1/n, T1). Note that at the
point t1 = 1/n the domain Qnxt1 no longer degenerates into a point, moreover, between the

original domain Qxt1 and domains Qnxt1 the strict inclusions Qn1
xt1
⊂ Qn1+1

xt1
⊂ ... ⊂ Qxt1 take

place and, obviously, lim
n→∞

Qnxt1 = Qxt1 .

In the non-degenerating domain Qnxt1 (for each finite n ∈ N∗) we consider the following
boundary value problem:

∂t1wn − ν∂2
xwn + fν,nwn = −fν,n, (9)

wn(x, t1)|x=0 = 0, wn(x, t1)|x=t1 = 0, wn(x, t1)|t1=1/n = 0, (10)

fν,n ≡ fn/ν ∈ L∞(Qnxt1), fν,n ≥ 0. (11)
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We want to transform boundary value problem (9)–(11) so that it would be set in a rect-
angular domain. For this purpose we will make the transformation of independent variables:
we pass from the variables {x, t1} to variables {y, t}. We have

x =
y

n− t
, t1 =

1

n− t
; y =

x

t1
, t = n− 1

t1
;

Qnyt = {y, t : 0 < y < 1, 0 < t < T} is a rectangular domain, and Ω is a section of the
rectangle Qnyt for any fixed t ∈ [0, T ],

t1 = 1/n⇔ t = 0, t1 = T1 ⇔ t = T = n− 1

T1
.

Since

w̃n(y, t) , wn

(
y

n− t
,

1

n− t

)
, f̃ν,n(y, t) = fν,n

(
y

n− t
,

1

n− t

)
, (12)

then for the derivative with respect to t1 of function wn(x, t1) (12) we obtain

∂wn
∂t1

=
∂w̃n(y, t)

∂t
(n− t)2 − ∂w̃n(y, t)

∂y
(n− t)y.

Now we find the derivative of function wn(x, t1) (12) with respect to the variable x :

∂wn
∂x

=
∂w̃n
∂y

(n− t), ∂2wn
∂x2

=
∂2w̃n
∂y2

(n− t)2.

We write down boundary value problem (9)–(11) in the domain Qnyt:

∂tw̃n − ν∂2
yw̃n −

y

n− t
∂yw̃n +

1

(n− t)2
f̃ν,nw̃ = − 1

(n− t)2
f̃ν,n, (13)

w̃n(y, t) = 0, {y, t} ∈ Σn
yt = {y, t : y ∈ {0} ∪ {1}, 0 < t < T}, (14)

w̃n(y, 0) = 0, y ∈ Ω = {y : 0 < y < 1, t = 0}. (15)

Instead of (13)–(15) in the domain Qnyt, following [5] and [6], we will consider a more
general boundary value problem:

∂tw̃n − ν∂2
yw̃n − γn(y, t)∂yw̃n + αn(t)f̃ν,nw̃n = −βn(t)f̃ν,n, (ν > 0), (16)

w̃n(y, t)|y=0 = 0, w̃n(y, t)|y=1 = 0, w̃n(y, t)|t=0 = 0, (17)

Kazakh Mathematical Journal, 20:1 (2020) 67–83



On solvability of one nonlinear boundary value... 71

where the given functions αn(t), βn(t), γn(y, t) for any fixed number n ∈ N∗ satisfy the
following conditions

α1n ≤ αn(t) ≤ α2n, β1n ≤ βn(t) ≤ β2n, ∀ t ∈ [0, T ],

|γn(y, t)| ≤ γ1n, |∂yγn(y, t)| ≤ γ1n, ∀ {y, t} ∈ Qnyt,
(18)

with given positive constants α1n, α2n, β1n, β2n, γ1n.

The following theorem is valid.

Theorem 1. Suppose we have a fixed number n ∈ N∗. Then, if f̃ν,n ∈ L∞(Qnyt) and
αn(t), βn(t), γn(y, t) satisfy conditions (18), then boundary value problem (16)–(17) has a
unique solution

w̃n ∈ H2,1
0 (Qnyt) ≡ L2(0, T ;H2(0, 1) ∩H1

0 (0, 1)) ∩H1(0, T ;L2(0, 1)), (19)

which satisfies the following estimate:

‖w̃n‖H2,1
0 (Qnyt)

≤ K
(
‖f̃ν,n‖L∞(Qnyt)

, ν
)
, moreover, K(0, ν) = 0. (20)

The proof of Theorem 1 can be obtained by Faedo-Galerkin method (for example, as
in [11]).

Since coefficients of equations (13)–(15) meet conditions (18), then for boundary value
problem (13)–(15) from Theorem 1 we obtain, as a corollary, the following theorem.

Theorem 2. Suppose we have a fixed number n ∈ N∗. Then, if f̃ν,n ∈ L∞(Qnyt), then bound-

ary value problem (13)–(15) has a unique solution w̃n ∈ H2,1
0 (Qnyt) (19), which satisfies the

following estimate:

‖w̃n‖H2,1
0 (Qnyt)

≤ K
(
‖f̃ν,n‖L∞(Qnyt)

, ν
)
, moreover, K(0, ν) = 0. (21)

We give the correspondence of functional spaces in terms of independent variables {y, t} ∈
Qnyt and {x, t1} ∈ Qnxt1 :

f̃ν,n ∈ L∞(Qnyt) ≡ L∞(0, T ;L∞(0, 1))⇔ fν,n ∈ L∞(Qnxt1) ≡ L∞(1/n, T1;L∞(0, t1)), (22)

w̃(y, t) ∈ H2,1
0 (Qnyt) ≡ L2(0, T ;H2(0, 1) ∩H1

0 (0, 1)) ∩H1(0, T ;L2(0, 1))⇔

⇔ w(x, t1) ∈ H2,1
0 (Qnxt1) ≡ L2(1/n, T1;H2(0, t1) ∩H1

0 (0, t1)) ∩H1(1/n, T1;L2(0, t1)). (23)

Further, taking into account the correspondence of spaces (22)–(23), in accordance with
Theorem 2 we can formulate the following statement:
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Theorem 3. Suppose we have a fixed number n ∈ N∗. Then, if fν,n ∈ L∞(Qnxt1) (22), then

boundary value problem (9)–(11) has a unique solution wn ∈ H2,1
0 (Qnxt1) (23) that satisfies

the following estimate

‖wn‖H2,1
0 (Qnxt1

)
≤ K

(
‖fν,n‖L∞(Qnxt1

), ν
)

≤ K0

(
‖fν‖L∞(Qxt1 ), ν

)
, moreover, K(0, ν) = K0(0, ν) = 0. (24)

The proof of this theorem will be given in the next section.

4 A priori estimates for a solution of problem (9)–(11). Formulation of the
main result for one-dimensional problem

Lemma 1. There exists a positive constant K1 independent of n, such that for all t1 ∈
(1/n, T1] the following inequality takes place:

‖wn(x, t1)‖2L2(0,t1) +

t1∫
1/n

‖∂xwn(x, τ1)‖2L2(0,τ1)dτ1 ≤ K1

(
‖fν(x, t1)‖L∞(Qxt1 ), ν

)
. (25)

Proof. Multiplying equation (9) by wn(x, t1) in the space L2(0, t1), we obtain

1

2

d

d t1
‖wn(x, t1)‖2L2(0,t1) + ν‖∂xwn(x, t1)‖2L2(0,t1)

≤ ‖fν,n(x, t1)‖L∞(0,t1)‖wn(x, t1)‖2L2(0,t1) + ‖fν,n(x, t1)‖L∞(0,t1)‖wn(x, t1)‖L1(0,t1).

Now by using Gronwall’s inequality and the following obvious inequality

‖fν,n‖L∞(Qnxt1
) ≤ ‖fν‖L∞(Qxt1 ), (26)

we get required statement of Lemma 1. Note that the equality K1(0, ν) = 0 holds.

Lemma 2. For a positive constant K2 independent of n, for all t1 ∈ (1/n, T1] the following
inequality takes place:

‖∂xwn(x, t1)‖2L2(0,t1) +

t1∫
1/n

‖∂2
xwn(x, τ1)‖2L2(0,τ1)dτ1 ≤ K2

(
‖fν(x, t1)‖L∞(Qxt1 ), ν

)
. (27)

Proof. Multiplying equation (9) by −∂2
xwn(x, t1) in the space L2(0, t1), we obtain

1

2

d

d t1
‖∂xwn(x, t1)‖2L2(0,t1) + ν‖∂2

xwn(x, t1)‖2L2(0,t1)
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≤ ‖fν,n(x, t1)‖L∞(0,t1)‖wn(x, t1)‖L2(0,t1)‖∂2
xwn(x, t1)‖L2(0,t1)

+‖fν,n(x, t1)‖L∞(0,t1)‖∂2
xwn(x, t1)‖L1(0,t1).

Hence, by using Gronwall’s inequality, Cauchy ε-inequality and (26), we get required
statement of Lemma 2. Note that the equality K2(0, ν) = 0 holds.

Lemma 3. For a positive constant K3 independent of n, for all t1 ∈ (1/n, T1] the following
inequality takes place:

‖∂t1wn(x, t1)‖2L2(Qnxt1
) ≤ K3

(
‖fν(x, t1)‖L∞(Qxt1 ), ν

)
. (28)

Proof. The statement of Lemma 3 follows from Lemmas 1–2 and equation (9), moreover, the
equality K3(0, ν) = 0 holds.

Thus, from Lemmas 1–3 we directly obtain the validity of the statement of Theorem 3 and
a priori estimate (24).

Now we can formulate the following two theorems:

Theorem 4. Let fν(x, t1) ∈ L∞(0, T1;L∞(0, t1)). Then problem (6)–(8) has a unique solu-
tion w(x, t1) ∈ H2,1

0 (Qxt1).

Theorem 5 (Main result). Let f(x, t1) ∈ L∞(0, T1;L∞(0, t1)). Then problem (1)–(3) has a
unique solution u(x, t1) ∈ H2,1

0 (Qxt1).

Proofs of Theorems 4–5 will be given in the following two sections.

5 Proof of Theorem4

Let wn(x, t1) be a solution to boundary value problem (9)–(11), which exists and is unique
according to Theorem 3 on the corresponding trapezoid Qnxt1 (n ∈ N∗) and belongs to the

space H2,1
0 (Qnxt1). Denote by {w̃n(x, t1), f̃n(x, t1)} the extensions of the mentioned solution

wn(x, t1) and the given function fn(x, t1) by zeros to the entire triangular domain Qxt1 . It

is obvious that a priori estimate (24) will remain true for extensions {w̃n(x, t1), f̃n(x, t1)}.
Thus, we obtain a bounded sequence of functions {w̃n(x, t1)}n∈N∗ , from which we can extract
weakly convergent subsequence (we preserve the notation of the index n for the subsequence):

w̃n(x, t1)→ z(x, t1) weakly in H2,1
0 (Qxt1).

Hence, in the integral identity (for any θ(x, t1) ∈ L2(Qxt1))

T1∫
0

t1∫
0

[
∂τ1w̃n(x, τ1)− ν∂2

xw̃n(x, τ1) + f̃ν,n(x, τ1)w̃n(x, τ1) + f̃ν,n(x, τ1)
]
θ(x, τ1)d x dτ1 = 0,
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we can pass to the limit as n→∞. For any θ(x, t1) ∈ L2(Qxt1) we have

T1∫
0

t1∫
0

[
∂τ1z(x, τ1)− ν∂2

xz(x, τ1) + fν(x, τ1)z(x, τ1) + fν(x, τ1)
]
θ(x, τ1)d x dτ1 = 0.

This means that the limit function z(x, t1) satisfies equation (6) in the space L2(Qxt1) and
boundary condition (24).

Thus, Theorem 4 is completely proved.

6 Proof of Theorem5

First of all, we note that by virtue of condition (8) the weak maximum principle holds
for the solution of boundary value problem (6)–(7) ( [12], chapter III, p. 2: Corollary), i.e.
we will have

w(x, t1) ≤ 0, {x, t1} ∈ Qxt1 ∪ Ωt1 . (29)

From (29) according to transformation (5) we will also have

−1 < w(x, t1), u(x, t1) ≥ 0, {x, t1} ∈ Qxt1 ∪ Ωt1 . (30)

Let us prove the following lemma.

Lemma 4. The following estimate holds

‖u‖H2,1(Qxt1 ) ≤ C1

(
‖w‖H2,1(Qxt1 ), ν

)
, moreover , C1(0, ν) = 0. (31)

Proof. From relation (5) we directly have

‖u‖L2(Qxt1 ) ≤
√
T1‖∂xu‖L2(Qxt1 ) ≤ ν

√
T1‖∂xw‖L2(Qxt1 ), (32)

‖∂xu‖L2(Qxt1 ) ≤ ν‖∂xw‖L2(Qxt1 ), (33)

‖∂ t1u‖L2(Qxt1 ) ≤ ν‖∂ t1w‖L2(Qxt1 ), (34)

and since, according to the statement of Theorem 4: w(x, t1) ∈ H2,1
0 (Qxt1), from this we

additionally obtain the estimate

‖∂xu‖L4(0,t1) ≤ ν‖∂xw‖L4(0,t1), ∀ t1 ∈ (0, T1). (35)

It remains for us to estimate the second derivative with respect to the variable x from u(x, t1).
To do this, we multiply equation (1) by −∂2

xu(x, t1) in the space L2(0, t1). We will have

1

2

d

dt1
‖∂xu(x, t1)‖2L2(0,t1) + ν

∥∥∂2
xu(x, t1)

∥∥2

L2(0,t1)

Kazakh Mathematical Journal, 20:1 (2020) 67–83



On solvability of one nonlinear boundary value... 75

≤
∣∣([∂xu(x, t1)]2, ∂2

xu(x, t1)
)∣∣+

∣∣(f(x, t1), ∂2
xu(x, t1)

)∣∣
≤ 2

ν
‖f(x, t1)‖2L2(0,t1) +

2

ν
‖[∂xu(x, t1)]2‖2L2(0,t1) +

ν

2
‖∂2

xu(x, t1)‖2L2(0,t1),

or
d

dt1
‖∂xu(x, t1)‖2L2(0,t1) + ν

∥∥∂2
xu(x, t1)

∥∥2

L2(0,t1)

≤ 4

ν

{
‖f(x, t1)‖2L2(0,t1) + ‖[∂xu(x, t1)]2‖2L2(0,t1)

}
. (36)

Taking into account (35) and the embedding H2,1
0 (Qxt1) ⊂ L2(0, T1;H2(0, t1)∩H1

0 (0, t1)), we
derive the following inequality

‖[∂xu(x, t1)]2‖2L2(0,t1) ≡ ‖∂xu‖
4
L4(0,t1) ≤ ν

4‖∂xw(x, t1‖4L4(0,t1) ≤ K4‖w(x, t1)‖4
H2,1

0 (Qxt1 )
. (37)

Thus, from (32)–(37) we obtain the required estimate (31). Lemma 4 is completely proved.

Finally, Lemma 4 gives us for boundary value problem (1)–(3) the uniqueness and the fact
that its solution u(x, t1) belongs to the space H2,1

0 (Qxt1) under the conditions of Theorem 5.
This lemma also gives us the completion of the proof of Theorem 5.

7 Statement of multidimensional boundary value problem

Let x = {x1, ..., xm}, Qxt1 = {x, t1 | |x| < t1, 0 < t1 < T1 <∞} be a cone with the vertex
at the origin and let Ωt1 be a section of the cone Qxt1 for the fixed time variable t1 ∈ (0, T1).
In the cone Qxt1 we consider the following boundary value problem:

∂t1u− ν∆u+ |∇u|2 = f, (ν > 0), (38)

u(x, t1)||x|=t1 = 0, (39)

where
f ∈ L∞(Qxt1), f ≥ 0. (40)

In this work, we study the question of the existence and uniqueness of a solution of
boundary value problem (38)–(40) in Sobolev space:

u ∈ H1,0
0 (Qxt1) ≡ L2(0, T1;H1

0 (Ωt1)) ∩H1(0, T1;H−1(Ωt1)). (41)

8 Converting (38)–(40) to linear boundary value problem

We transform (38)–(40) to a linear boundary value problem for an unknown function
w(x, t1). Using the following one-to-one transformation:

w(x, t1) = exp {−u/ν} − 1, u = −ν ln(w + 1), (42)
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we obtain
∂t1w − ν∆w + fνw = −fν , (43)

w(x, t1)||x|=t1 = 0, (44)

fν ≡ f/ν ∈ L∞(Qxt1), fν ≥ 0. (45)

9 On a family of auxiliary boundary value problems in domains represented
by truncated cones

To problem (43)–(45), we will set a family of boundary value problems, each of which is
considered in the domain representing the corresponding truncated cone.

So, let n ∈ N∗ ≡ {n ∈ N : n ≥ n1, 1/n1 < T1}, Qnxt1 = {x, t1 : |x| < t1, 1/n < t1 <
T1 < ∞} be a cone, and let Ωt1 be a section at fixed t1 ∈ (1/n, T1). Note that at the point
t1 = 1/n the domain Qnxt1 no longer degenerates into a point, moreover, between the original

domain Qxt1 and domains Qnxt1 the strict inclusions Qn1
xt1
⊂ Qn1+1

xt1
⊂ ... ⊂ Qxt1 take place

and, obviously, lim
n→∞

Qnxt1 = Qxt1 .

In the non-degenerating domain Qnxt1 (for each finite n ∈ N∗) we consider the following
boundary value problem:

∂t1wn − ν∆wn + fν,nwn = −fν,n, (46)

wn(x, t1)||x|=t1 = 0, wn(x, t1)|t1=1/n = 0, (47)

fν,n ≡ fn/ν ∈ L∞(Qnxt1), fν,n ≥ 0. (48)

We want to transform boundary value problem (46)–(48), so that it would be set in
a cylindrical domain. For this purpose we will make the transformation of independent
variables: we pass from the variables {x, t1} to variables {y = y1, ..., ym, t}. We have

xi =
yi

n− t
, t1 =

1

n− t
, yi =

xi
t1
, t = n− 1

t1
;

Qnyt = {y, t : |y| < 1, 0 < t < T} is a cylindrical domain, and Ω is a section of the cylinder
Qnyt for any fixed t ∈ [0, T ],

t1 = 1/n⇔ t = 0, t1 = T1 ⇔ t = T = n− 1

T1
.

Since

w̃n(y, t) , wn

(
y

n− t
,

1

n− t

)
, f̃ν,n(y, t) = fν,n

(
y

n− t
,

1

n− t

)
, (49)

then for the derivative with respect to t1 of function wn(x, t1) (49) we obtain

∂wn
∂t1

=
∂w̃n(y, t)

∂t
(n− t)2 −

m∑
i=1

∂w̃n(y, t)

∂yi
(n− t)yi.
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Now we find the derivative of function wn(x, t1) (49) with respect to the variable xi :

∂wn
∂xi

=
∂w̃n
∂yi

(n− t), ∂2wn
∂x2

i

=
∂2w̃n
∂y2

i

(n− t)2.

We write down boundary value problem (46)–(48) in the domain Qnyt:

∂tw̃n − ν∆w̃n −
m∑
i=1

yi
n− t

∂yiw̃n +
1

(n− t)2
f̃ν,nw̃ = − 1

(n− t)2
f̃ν,n, (50)

w̃n(y, t) = 0, {y, t} ∈ Σn
yt = {y, t : |y| = 1, 0 < t < T}, (51)

w̃n(y, 0) = 0, y ∈ Ω = {y : |y| < 1}. (52)

Instead of (50)–(52) in the domain Qnyt, following [5] and [6], we will consider a more general
boundary value problem:

∂tw̃n − ν∆w̃n −
m∑
i=1

γin(yi, t)∂yiw̃n + αn(t)f̃ν,nw̃n = −βn(t)f̃ν,n, (ν > 0), (53)

w̃n(y, t)||y|=1 = 0, , w̃n(y, t)|t=0 = 0, (54)

where the given continuous functions αn(t), βn(t), γin(y, t) satisfy the following conditions
for any fixed number n ∈ N∗

α1n ≤ αn(t) ≤ α2n, β1n ≤ βn(t) ≤ β2n, ∀ t ∈ [0, T ],

|γin(y, t)| ≤ γ1n, |∂yγin(y, t)| ≤ γ1n, ∀ {y, t} ∈ Qnyt,
(55)

with given positive constants α1n, α2n, β1n, β2n, γ1n.

The following theorem is valid.

Theorem 6. Suppose we have a fixed number n ∈ N∗. Then, if f̃ν,n ∈ L∞(Qnyt) and
αn(t), βn(t), γin(y, t) satisfy conditions (55), then boundary value problem (53)–(54) has a
unique solution

w̃n ∈ H1,0
0 (Qnyt) ≡ L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;H−1(Ω)), (56)

which satisfies the following estimate:

‖w̃n‖H1,0
0 (Qyt)

≤ K
(
‖f̃ν,n‖L∞(Qyt), ν

)
, moreover, K(0, ν) = 0. (57)
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The proof of Theorem 6 can be obtained by Faedo-Galerkin method (for example, as
in [11]).

Since coefficients of equations (50)–(52) meet conditions (55), then for boundary value
problem (50)–(52) from Theorem 6 we obtain, as a corollary, the following theorem.

Theorem 7. Suppose we have a fixed number n ∈ N∗. Then, if f̃ν,n ∈ L∞(Qnyt), then bound-

ary value problem (50)–(52) has a unique solution w̃n ∈ H1,0
0 (Qnyt) (56), which satisfies the

following estimate:

‖w̃n‖H1,0
0 (Qyt)

≤ K
(
‖f̃ν,n‖L∞(Qyt), ν

)
, moreover, K(0, ν) = 0. (58)

We give the correspondence of functional spaces in terms of the independent variables
{y, t} ∈ Qnyt and {x, t1} ∈ Qnxt1 :

f̃ν,n ∈ L∞(Qnyt) ≡ L∞(0, T ;L∞(Ω))⇔ fν,n ∈ L∞(Qnxt1) ≡ L∞(1/n, T1;L∞(Ωt1)), (59)

w̃(y, t) ∈ H1,0
0 (Qnyt) ≡ L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;H−1(Ω))⇔

⇔ w(x, t1) ∈ H1,0
0 (Qnxt1) ≡ L2(1/n, T1;H1

0 (Ωt1)) ∩H1(1/n, T1;H−1(Ωt1)). (60)

Further, taking into account the correspondence of spaces (59)–(60), in accordance with
Theorem 7 we can formulate the following statement:

Theorem 8. Suppose we have a fixed number n ∈ N∗. Then, if fν,n ∈ L∞(Qnxt1) (59), then

boundary value problem (46)–(48) has a unique solution wn ∈ H1,0
0 (Qnxt1) (60) that satisfies

the following estimate:

‖wn‖H1,0
0 (Qnxt1

)
≤ K

(
‖fν,n‖L∞(Qnxt1

), ν
)

≤ K0

(
‖fν‖L∞(Qxt1 ), ν

)
, moreover, K(0, ν) = K0(0, ν) = 0. (61)

The proof of this theorem will be given in the next section.

10 A priori estimates for the solution of problem (46)–(48). Formulation of the
main result for the multidimensional problem

Lemma 5. There exists a positive constant K1 independent of n, such that for all t1 ∈
(1/n, T1] the following inequality takes place:

‖wn(x, t1)‖2L2(Ωt1 ) +

t1∫
1/n

‖∇wn(x, τ1)‖2L2(Ωτ1 )dτ1 ≤ K1

(
‖fν(x, t1)‖L∞(Qxt1 ), ν

)
. (62)
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Proof. Multiplying equation (46) by wn(x, t1) in the space L2(Ωt1), we obtain

1

2

d

d t1
‖wn(x, t1)‖2L2(Ωt1 ) + ν‖∇wn(x, t1)‖2L2(Ωt1 )

≤ ‖fν,n(x, t1)‖L∞(Ωt1 )‖wn(x, t1)‖2L2(Ωt1 ) + ‖fν,n(x, t1)‖L∞(Ωt1 )‖wn(x, t1)‖L1(Ωt1 ).

Now by using Gronwall’s inequality and the following obvious inequality

‖fν,n‖L∞(Qnxt1
) ≤ ‖fν‖L∞(Qxt1 ), (63)

we get the required statement of Lemma 5. Note that the equality K1(0, ν) = 0 holds.

From the linear continuity of the Laplace operator ∆ : H1
0 (Ωt1) → H−1(Ωt1) it follows

the validity of the following lemma.

Lemma 6. For a positive constant K2 independent of n, for all t1 ∈ (1/n, T1] the following
inequality takes place:

t1∫
1/n

‖∆wn(x, τ1)‖2H−1(Ωτ1 )dτ1 ≤ K2

(
‖fν(x, t1)‖L∞(Qxt1 ), ν

)
, moreover, K2(0, ν) = 0. (64)

Lemma 7. For a positive constant K3 independent of n, for all t1 ∈ (1/n, T1] the following
inequality takes place:

t1∫
1/n

‖∂τ1wn(x, τ1)‖2H−1(Ωτ1 )dτ1 ≤ K3

(
‖fν(x, t1)‖L∞(Qxt1 ), ν

)
. (65)

Proof. The statement of Lemma 7 follows from Lemmas 5–6 and equation (46), moreover,
the equality K3(0, ν) = 0 holds.

Thus, from Lemmas 5–7 we directly obtain the validity of the statement of Theorem 8
and a priori estimate (61).

Now we can formulate the following two theorems:

Theorem 9. Let fν(x, t1) ∈ L∞(0, T1;L∞(Ωt1)). Then problem (43)–(45) has a unique
solution w(x, t1) ∈ H1,0

0 (Qxt1).

Theorem 10 (Main result). Let f(x, t1) ∈ L∞(0, T1;L∞(Ωt1)). Then problem (38)–(40) has
a unique solution u(x, t1) ∈ H1,0

0 (Qxt1).
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Proofs of Theorems 9–10 will be given in the following two sections.

11 Proof of Theorem9

Let wn(x, t1) be a solution to boundary value problem (46)–(48), which exists and is
unique according to Theorem 8 at the corresponding truncated cone Qnxt1 (n ∈ N∗) and

belongs to the space H1,0
0 (Qnxt1). Denote by {w̃n(x, t1), f̃n(x, t1)} the extensions of the men-

tioned solution wn(x, t1) and the given function fn(x, t1) by zeros to the entire cone Qxt1 .

It is obvious that a priori estimate (61) will remain true for extensions {w̃n(x, t1), f̃n(x, t1)}.
Thus, we obtain a bounded sequence of functions {w̃n(x, t1)}n∈N∗ , from which we can extract
weakly convergent subsequence (we preserve the notation of the index n for the subsequence):

w̃n(x, t1)→ z(x, t1) weakly in H1,0
0 (Qxt1).

Hence, in the integral identity (for any θ(x, t1) ∈ L2(0, T1;H1
0 (Ωt1)))

T1∫
0

t1∫
0

[
∂τ1w̃n(x, τ1)− ν∆w̃n(x, τ1) + f̃ν,n(x, τ1)w̃n(x, τ1) + f̃ν,n(x, τ1)

]
θ(x, τ1)d x dτ1 = 0,

we can pass to the limit as n→∞. For any θ(x, t1) ∈ L2(0, T1;H1
0 (Ωt1)) we have

T1∫
0

t1∫
0

[∂τ1z(x, τ1)− ν∆z(x, τ1) + fν(x, τ1)z(x, τ1) + fν(x, τ1)] θ(x, τ1)d x dτ1 = 0.

This means that the limit function z(x, t1) satisfies equation (43) in the space
L2(0, T1;H−1(Ωt1)) and boundary condition (44). Thus, Theorem 9 is completely proved.

12 Proof of Theorem10

First of all, we note that by virtue of condition (45) the weak maximum principle holds
for a solution of boundary value problem (43)–(44) ([12], chapter III, p. 2: Corollary), i.e.
we will have

w(x, t1) ≤ 0, {x, t1} ∈ Qxt1 ∪ Ωt1 . (66)

From (66) according to transformation (42) we will also have

−1 < w(x, t1), u(x, t1) ≥ 0, {x, t1} ∈ Qxt1 ∪ Ωt1 . (67)

Let us prove the following lemma.

Lemma 8. The following estimate holds

‖u‖
H1,0

0 (Qxt1 )
≤ C1

(
‖w‖

H1,0
0 (Qxt1 )

, ν
)
, moreover , C1(0, ν) = 0. (68)
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Proof. From relation (42) we directly have

‖u‖L2(Qxt1 ) ≤
√
T1‖∇u‖L2(Qxt1 ) ≤ ν

√
T1‖∇w‖L2(Qxt1 ), (69)

‖∇u‖L2(Qxt1 ) ≤ ν‖∇w‖L2(Qxt1 ), (70)

‖∂ t1u‖L2(0,T1;H−1(Ωt1 )) ≤ ν‖∂ t1w‖L2(0,T1;H−1(Ωt1 )), (71)

and according to inequality (64) from Lemma 6 we additionally obtain estimate

‖∆u‖H−1(Ωt1 ) ≤ ν‖∆w‖H−1(Ωt1 ), ∀ t1 ∈ (0, T1). (72)

Finally, from equation (38) we will directly have that

(∇u(x, t1))2 bounded in L2(0, T1;H−1(Ωt1)). (73)

Thus, from (69)–(73) we obtain required estimate (68). Lemma 8 is completely proved.

Finally, Lemma 8 gives us for boundary value problem (38)–(40) the uniqueness and the
fact that its solution u(x, t1) belongs to the space H1,0

0 (Qxt1) under the conditions of Theo-
rem 10. This lemma also gives us the completion of the proof of Theorem 10.

Conclusion

In this paper, we have established theorems on solvability of nonlinear heat conduction
problem in a degenerating domain in Sobolev classes, the degeneracy point of which located
at the origin.

The results of the work for the one-dimensional version can be generalized to the case
when we have the domain of independent variables Qxt1 = {x, t1 : 0 < x < ϕ(t1), 0 <
t1 < T1 < ∞} represented by curvilinear triangle moving boundary of which can change
according to the rule x = ϕ(t1), t1 ∈ [0, T1], and the condition ϕ(0) = 0 holds. Moreover,
for the function ϕ(t1) it is required to meet certain natural conditions. For example, the
function ϕ(t1) must satisfy the following two conditions: 10 in a sufficiently short period of
time (0, t∗1) the function ϕ(t1) could have the representation ϕ(t1) = µ t1, where µ would be
a given positive constant (in our work it was equal to one); 20 on the interval [t∗1, T1] the
function ϕ(t1) would be continuously differentiable and possess the property of monotonicity,
providing one-to-one transformation from the independent variables {x, t1} to variables {y, t}.

Similar considerations take place for boundary value problems in the multidimensional
case. Indeed, in the multidimensional case, when we have the domain of independent variables
Qxt1 = {x = x1, ..., xm, t1 : |x| < ϕ(t1), 0 < t1 < T1 <∞} represented by ”curvilinear cone”.
Moreover, the ”moving” lateral surface of this domain for each fixed t1 can be changed
according to the rule |x| =

√
x2

1 + ...+ x2
m = ϕ(t1), t1 ∈ [0, T1], and the condition ϕ(0) = 0

holds. Moreover, for the function ϕ(t1) it is required to meet certain conditions. For example,
the function ϕ(t1) must satisfy the following two conditions: 10 in a sufficiently short period
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of time (0, t∗1) the function ϕ(t1) could have the representation ϕ(t1) = µ t1, where µ would
be a given positive constant (in our work it was equal to one); 20 on the interval [t∗1, T1] the
function ϕ(t1) would be continuously differentiable and possess the property of monotonicity,
providing one-to-one transformation of each circular section of the ”curvilinear cone” in the
independent variables {x, t1} to the corresponding circular section of the cylinder in variables
{y, t}.
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Жиенәлиев М.Т., Иманбердиев Қ.Б., Қасымбекова А.С., Ерғалиев М.Ғ. ӨЗГЕ-
ШЕЛЕТIН ОБЛЫСТАРДАҒЫ ЖЫЛУӨТКIЗГIШТIК ТЕҢДЕУI ҮШIН БIР СЫЗЫ-
ҚТЫҚ ЕМЕС ШЕКАРАЛЫҚ ЕСЕПТIҢ ШЕШIМДIЛIГI ТУРАЛЫ

Жұмыс өзгешелену нүктесi координаталар басында орналасқан өзгешеленетiн об-
лыстардағы жылуөткiзгiштiк теңдеуiне қойылған бiр сызықтық емес шекаралық есеп-
тiң Соболев кластарындағы шешiлiмдiлiк мәселелерiне арналған. Фаедо-Галеркин мен
априорлы бағалаулар әдiстерiн пайдалану арқылы қарастырылып отырған шекаралық
есептiң шешiмiнiң бар болуы мен жалғыздығы туралы теоремалар, әрi, оған қоса, бiрөл-
шемдi шекаралық есеп үшiн берiлген функциялардың тегiстiгiнiң өсуi кезiндегi регуляр-
лығы дәлелденедi. Сонымен қатар бұл нәтижелердiң қарастырылып отырған шекаралық
есептердiң көпөлшемдi (өзгешелену нүктесi конус төбесiнде орналасқан көпөлшемдi ко-
нустағы) жағдайы үшiн әрi қарай дамытылуы алынған. Бұл жерде тек бiрөлшемдi жағ-
даймен салыстырғанда әлсiзiрек шешiмнiң ғана бар болуы мен жалғыздығы көрсетiлдi.

Кiлттiк сөздер. Екiншi реттi параболалық теңдеулер, сызықтық емес параболалық
теңдеулер.

Дженалиев М.Т., Иманбердиев К.Б., Касымбекова А.С., Ергалиев М.Г. О РАЗРЕШИ-
МОСТИ ОДНОЙ НЕЛИНЕЙНОЙ ГРАНИЧНОЙ ЗАДАЧИ ДЛЯ УРАВНЕНИЯ ТЕП-
ЛОПРОВОДНОСТИ В ВЫРОЖДАЮЩИХСЯ ОБЛАСТЯХ

Работа посвящена вопросам разрешимости в соболевских классах одной нелинейной
задачи теплопроводности в вырождающихся областях, точка вырождения которой на-
ходится в начале координат. С использованием методов Фаэдо-Галеркина и априорных
оценок доказываются теоремы о существовании и единственности решения рассматрива-
емой граничной задачи, а также его регулярность при повышении гладкости заданных
функций для одномерной граничной задачи. Также получено дальнейшее развитие этих
результатов для многомерного варианта (в многомерном конусе с точкой вырождения
на вершине конуса) рассматриваемых граничных задач. Здесь показаны существование
и единственность, но только более слабого решения, чем в одномерном случае.

Ключевые слова. Параболические уравнения второго порядка, нелинейные парабо-
лические уравнения.
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Abstract. In this paper we consider a nonlocal boundary value problem for the Laplace operator in a

ball, which is a multidimensional generalisation of the Samarskii-Ionkin problem. The well-posedness of

the problem is investigated, and an integral representation of the solution is obtained.

Keywords. Laplace operator, Poisson’s equation, Boundary value problem, Nonlocal boundary value
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1 Introduction

It is well known that Dirichlet and Neumann boundary value problems play important
roles in the theory of harmonic functions [1]. In one-dimensional case, or when considering
the problem in a multidimensional parallelepiped, the main problems include also periodic
boundary value problems. In the works [2], [3], for the first time, a new class of boundary
value problems for the Poisson’s equation in a multidimensional ball Ω ⊂ Rn was introduced
(k = 1, 2):

The problem Pk. Find a solution of the Poisson’s equation

−∆u(x) = f(x), x ∈ Ω,

satisfying the following periodic boundary conditions

u(x)− (−1)ku(x∗) = τ(x), x ∈ ∂Ω+,

∂u

∂r
(x) + (−1)k

∂u

∂r
(x∗) = µ(x), x ∈ ∂Ω+.
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Here, ∂Ω+ is a part of the sphere ∂Ω, for which x1 ≥ 0; each point x = (x1, x2, ..., xn) ∈ Ω
is matched by its ”opposite” point x∗ = (−x1, α2x2, ..., αnxn) ∈ Ω, where the indices αj ∈
{−1, 1}, j = 2, ..., n. Clearly, if x ∈ ∂Ω+, then x∗ ∈ ∂Ω−.

These problems are analogous to the classical periodic boundary value problems. In [2],
[3], the well-posedness of these problems were investigated. Moreover, there, the authors
showed the existence and uniqueness of the solution to the problem P1, while the solution
of the problem P2 is unique up to a constant term and exists if the necessary condition of
the well-posedness holds. The uniqueness and existence were shown by using the extremum
principle and Green’s function, respectively. In [3], the authors considered the problem Pk
in the two-dimensional case and showed the possibility of using the method of separation
of variables. Moreover, in this case, the self-adjointness of these problems and its spectral
properties were studied.

If we turn to the non-classical problems, then one of the most popular problems is the
Samarskii-Ionkin problem, arisen in connection with the study of the processes occurring in
the plasma in the 70s of the last century by physicists (see e.g. [5], [6]). In [7], [8], an analog
of the Samarskii-Ionkin type boundary value problem for the Poisson’s equation in a disk was
considered. We also refer to [9]–[12] for the problems generalising the periodic problem Pk. We
also note that nonlocal boundary value problems of periodic type were developed for the case
of problems with integro-differential boundary operators: for Poisson’s equation [13], [14]
and biharmonic equation [15], [16]. In [17], a nonlocal problem for the Laplace equation
generalising the periodic Pk and Robin problems were considered.

In this paper we study a nonlocal boundary value problem for the Laplace operator in a
ball, which is a multidimensional generalisation of the Samarskii-Ionkin problem.

2 Statement of the problem

Let x = (x1, x2, . . . , xn) ∈ Rn be an arbitrary point of the unit ball Ω = {x =
(x1, x2, . . . , xn) ∈ Rn : |x| < 1} ⊂ Rn. Let αk ∈ {−1, 1}. Then (αk)

2 = 1. De-
note x∗ = (−x1, α2x2, . . . , αnxn), and ∂Ω+ (∂Ω−) is a part of the sphere ∂Ω, for which
x1 > 0 (x1 < 0) . We also denote a part of the sphere ∂Ω, for which x1 = 0, by ∂Ω0.

Let us consider the following nonlocal boundary value problem for the Laplace operator
in the ball, which is a multidimensional generalisation of the Samarskii-Ionkin problem.

The problem Sα1. Find a function u(x) ∈ C2(Ω) ∩ C1(Ω̄\∂Ω0) satisfying the Poisson’s
equation

−∆u(x) = f(x), x ∈ Ω, (1)

and the following boundary conditions

u(x)− αu (x∗) = τ(x), x ∈ ∂Ω+, (2)

∂u

∂n
(x)− ∂u

∂n
(x∗) = µ(x), x ∈ ∂Ω+, (3)
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where f(x) ∈ Cε(Ω̄), τ(x) ∈ C1+ε[∂Ω+], µ(x) ∈ Cε[∂Ω+], 0 < ε < 1, and α is a fixed real
number. Here, ∂

∂n is a derivative with respect to the direction of the outer normal to ∂Ω.

In the case when α = −1, we obtain antiperiodic boundary problem, which was studied
earlier in the works [1]–[2]. We refer to [7]–[8] for the case α = 0. The two-dimensional case
of the problem Sα1 was studied in [10]–[12].

3 Fredholm property of the problem Sα1

In this section we show that the problem Sα1 is not even Noetherian when α = 1, that is,
the homogeneous problem Sα1

∆u(x) = 0, x ∈ Ω,

u(x)− u(x∗) = 0, x ∈ ∂Ω+,

∂u
∂n(x)− ∂u

∂n (x∗) = 0, x ∈ ∂Ω+,

(4)

has an infinite number of linearly independent solutions.

For this, let us introduce the auxiliary functions c(x) and s(x) as follows

c(x) = u(x) + u(x∗), s(x) = u(x)− u(x∗).

Substituting the function s(x) in the homogeneous problem (4), we have

∆s(x) = 0, x ∈ Ω, s(x) = 0, x ∈ ∂Ω,

which means s(x) ≡ 0 for all x ∈ Ω. This implies u(x) = u(x∗) for all x ∈ Ω. Hence, we
obtain c(x) = 2u(x).

By the construction of the function c(x), it must have the symmetric property

c(x) = c(x∗). (5)

So, this function automatically satisfies boundary conditions of (4).

Thus, the function c(x) is harmonic (∆c(x) = 0) satisfying the symmetric condition (5).
Since there are infinite number of such linearly independent harmonic functions, the problem
Sα1 is not even Noetherian when α = 1. Therefore, in this case the problem Sα1 is not
Fredholm.

Throughout this paper, we consider the Fredholm case of the problem Sα1, that is, the
case α 6= 1.
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4 Uniqueness of the solution to the problem Sα1

Theorem 1. Let α 6= 1. Then the problem Sα1 has no more than one solution.

Proof. Suppose that there are two functions u1(x) and u2(x) satisfying the conditions of the
problem Sα1. We show that the function u(x) = u1(x)− u2(x) is equal to zero. It is obvious
that the function u(x) is harmonic and satisfies the following homogeneous conditions

u(x)− αu(x∗) = 0, x ∈ ∂Ω+, (6)

∂u

∂n
(x)− ∂u

∂n
(x∗) = 0, x ∈ ∂Ω+. (7)

Denote
v(x) = u(x)− u(x∗). (8)

It is clear that v(x) is a harmonic function with the symmetric property

v(x) = −v(x∗), x ∈ Ω. (9)

Hence, in view of the boundary condition (7) we get the following classical Neumann problem

∆v(x) = 0, x ∈ Ω;
∂v

∂n
(x) = 0, x ∈ ∂Ω.

Consequently, v = const.

Therefore, from (8) we obtain v ≡ 0, x ∈ Ω. It implies that u(x) = u(x∗), x ∈ Ω.
Moreover, we get u(x) − u(x∗) = 0, x ∈ ∂Ω+, which, together with the boundary condition
(6), show that

u(x) = 0, x ∈ ∂Ω, (10)

since α 6= 1. By the uniqueness of the solution to the Dirichlet problem for the Laplace
equation, we have u(x) ≡ 0, x ∈ Ω̄, that is, u1(x) = u2(x).

Thus, we have completed the proof of Theorem 1. �

5 Construction of the adjoint problem to the problem Sα1

Let us denote byWα1 the linear manifold of functions u(x) ∈ C2(Ω)∩C1(Ω̄\∂Ω0) satisfying
the boundary conditions (6) and (7).

Let Lα1 be a closure of the linear operator in L2(Ω) given by the differential expression

Lu = −∆u(x), x ∈ Ω, (11)

on the linear manifold Wα1.
It is easy to see that the domain of the definition of the given operator consists of strong

solutions to the problem Sα1. Clearly, this domain of the definition is dense in L2(Ω). Hence,
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the adjoint operator to the operator Lα1 exists. Since the initial operator is given by the
boundary conditions, then its adjoint operator should also be given by the boundary condi-
tions. Moreover, the adjoint operator is given by the differential expression (11).

In order to construct the adjoint operator, let us consider the following difference

(Lα1u, v)− (u, Lv) = 0 (12)

for all u ∈Wα1 and v ∈ C2(Ω) ∩ C1
(
Ω̄\∂Ω0

)
.

We apply the Green’s theorem in a plane to (12) to get∮
∂Ω

{
u
∂v

∂n
− v ∂u

∂n

}
ds = 0, (13)

where
∂

∂n
is a derivative with respect to the direction of the outer normal to ∂Ω.

Hence, taking into account the boundary conditions (6) and (7), to which functions u ∈
Wα1 satisfy, we get from (13) that∫

∂Ω+

{
u (x∗)

[
∂v

∂n
(x∗) + α

∂v

∂n
(x)

]
− ∂u

∂n
(x∗) [v(x) + v (x∗)]

}
ds = 0.

Since u(x) and
∂u

∂n
(x) are independent of each other, we obtain the boundary conditions for

the functions v ∈ C2(Ω) ∩ C1
(
Ω̄\∂Ω0

)
, which belong to the domain of the definition of the

adjoint operator
v(x) + v (x∗) = 0, x ∈ ∂Ω+, (14)

α
∂v

∂n
(x) +

∂v

∂n
(x∗) = 0, x ∈ ∂Ω+. (15)

Taking the limit of the sequences corresponding to the strong solutions, it is immediately to
see that equality (12) holds for all u ∈ D (Lα1) and v ∈ D (L∗

α1).
As in Section 3, it is easy to show that the problem with the boundary conditions (14)–

(15) is Fredholm. Consequently, this problem is formal adjoint to Sα1. In the next section,
the well-posedness of Sα1 with α 6= 1 will be justified in the sense of both classical and strong
solutions. Hence, the inverse operator L−1

α1 exists and is defined everywhere in L2(Ω).
Here, by standard arguments related to the coincidence of the adjoint operator to the

inverse one and the inverse operator to the adjoint one for the linear closed operators, we
obtain that the adjoint problem to Sα1 is a problem for the Poisson’s equation

−∆v = g(x), x ∈ Ω, (16)

with the boundary conditions (14)–(15).
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Thus, the adjoint problem (in the sense of classical solutions) is the following problem:

The problem S∗
α1. Find a function v(x) ∈ C2(Ω) ∩ C1

(
Ω̄\∂Ω0

)
satisfying the Poisson’s

equation (16) in the ball Ω = {x : |x| < 1} ⊂ Rn and the boundary conditions

v(x) + v (x∗) = τ(x), x ∈ ∂Ω+, (17)

α
∂v

∂n
(x) +

∂v

∂n
(x∗) = µ(x), x ∈ ∂Ω+, (18)

where g(x) ∈ Cε(Ω̄), τ(x) ∈ C1+ε [∂Ω+], µ(x) ∈ Cε [∂Ω+], 0 < ε < 1, α is a fixed real number
from (2) of the problem Sα1.

Thus, we have obtained the following result:

Theorem 2. The boundary value problems Sα1 and S∗
α1 form a Fredholm pair.

5 The well-posedness of the problem Sα1

By Theorem 1 we know that the well-posedness case is the case when α 6= 1.

For convenience, let us formulate this problem again.

The problem Sα1. Find a function u(x) ∈ C2(Ω) ∩ C1(Ω̄\∂Ω0) satisfying the Poisson’s
equation

−∆u(x) = f(x), x ∈ Ω, (19)

and the boundary conditions

u(x)− αu (x∗) = τ(x), x ∈ ∂Ω+, (20)

∂u

∂n
(x)− ∂u

∂n
(x∗) = µ(x), x ∈ ∂Ω+, (21)

where f(x) ∈ Cε(Ω̄), τ(x) ∈ C1+ε[∂Ω+], µ(x) ∈ Cε[∂Ω+], 0 < ε < 1 and α is a fixed real
number. Here, ∂

∂n is a derivative with respect to the direction of the outer normal to ∂Ω.

It is clear that a necessary condition for the existence of the solution in the class C1(Ω̄)
is the fulfillment of the following conditions

µ (0, x2, . . . , xn) = µ (0, α2x2, . . . , αnxn) = 0, x ∈ ∂Ω+,

τ (0, x2, . . . , xn) = τ (0, α2x2, . . . , αnxn) = 0, x ∈ ∂Ω+, when α = 1.
(22)

Let us briefly demonstrate that problem (19)–(21) can be reduced to two boundary value
problems for Poisson’s equation with self-adjoint boundary conditions.
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Note that when we change to a new variable x∗ = (−x1, α2x2, . . . , αnxn), the ”radial
derivative” in spherical coordinates does not change its sign:

∂

∂r∗
=

n∑
j=1

x∗j
|x∗|

∂

∂x∗j
=

n∑
j=1

αjxj
|x|

∂xj
∂x∗j

∂

∂xj
=

n∑
j=1

xj
|x|

∂

∂xj
=

∂

∂r
.

So, we have (
∂u

∂n

)
(x∗) =

∂

∂n
(u (x∗)) , x ∈ ∂Ω. (23)

Let us now introduce the auxiliary functions U(x) and V (x):

u(x)− u (x∗) = 2U(x), u(x) + u (x∗) = 2V (x).

Clearly,
u(x) = U(x) + V (x), (24)

and
U(x) = −U (x∗), V (x) = V (x∗) , x ∈ Ω. (25)

By the direct calculation, one can verify that the function U(x) is a solution of the Neumann
problem:

−∆U = f−(x), x ∈ Ω, (26)

∂U

∂n
(x) = µ−(x), x ∈ ∂Ω; (27)

while V (x) is a solution to the Dirichlet problem:

−∆V = f+(x), x ∈ Ω, (28)

V (x) = τ+(x), x ∈ ∂Ω. (29)

Here,

f±(x) =
1

2
{f(x)± f (x∗)} , (30)

µ−(x) =
1

2


µ(x), x ∈ ∂Ω+,

−µ (x∗) , x ∈ ∂Ω−,
(31)

τ+(x) =
1

1− α


τ(x)− (1 + α)U(x), x ∈ ∂Ω+,

τ (x∗)− (1 + α)U (x∗) , x ∈ ∂Ω−.
(32)

We note that the function τ+(x) depends not only on τ(x), but also on U(x) on the part
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of the boundary ∂Ω+. Therefore, these two problems should be solved sequentially: first, the
Neumann problem for U(x), then, using the obtained solution, we solve the Dirichlet problem
for V (x).

The Neumann (26), (27) and Dirichlet (28), (29) problems are classical boundary value
problems. So, nowadays, the well-posedness of these problems and smoothness of solutions
are well-known. By the assumption of fulfillment of the matching conditions (22), it is easy
to verify availability of the required smoothness of the boundary functions τ+(x) and µ−(x).

For the Neumann problem (26), (27), by (30) and (31) we see that the necessary and
sufficient conditions for the existence of the solution hold:∫

Ω

f−(x)dx+

∫
∂Ω

µ−(x)dSx = 0.

Therefore, the solution U(x) to the Neumann problem (26), (27) exists for all f(x) ∈ Cε(Ω̄)
and µ ∈ Cε [∂Ω+] , and belongs to U(x) ∈ C2+ε(Ω) ∩ C1+ε(Ω̄).

Consequently, the boundary function τ+(x) from (32) belongs to C1+ε[∂Ω+] and
C1+ε[∂Ω−]. Therefore, the solution to the Dirichlet problem (28), (29) exists and is unique.
This solution belongs to C2+ε(Ω) ∩ C1+ε(Ω̄\∂Ω0).

The solution to the Neumann problem (26)–(27) has the form

U(x) =

∫
Ω

GN (x, y)f−(y)dy +

∫
∂Ω

GN (x, y)µ−(y)dSy + C1, (33)

while the solution to the Dirichlet problem (28)–(29) is

V (x) =

∫
Ω

GD(x, y)f+(y)dy −
∫
∂Ω

∂GD(x, y)

∂ny
τ+(y)dSy, (34)

where GD(x, y) and GN (x, y) are Green’s functions of the Dirichlet and Neumann problems
for Poisson’s equation in Ω, respectively. By the construction of the function U(x), it must
have the symmetric property U(x) = −U (x∗), which means that C1 = 0. Therefore, we
further assume that this condition is fulfilled.

By substituting the functions f−(y) and µ−(y) in the representation of U(x), we get

U(x) =

∫
Ω

GN (x, y)f−(y)dy +

∫
∂Ω

GN (x, y)µ−(y)dSy

=
1

2

∫
Ω

GN (x, y) (f(y)− f (y∗)) dy +
1

2

∫
∂Ω+

GN (x, y)µ(y)dSy
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−1

2

∫
∂Ω−

GN (x, y)µ (y∗) dSy =
1

2

∫
Ω

(GN (x, y)−GN (x, y∗)) f(y)dy +
1

2

∫
∂Ω+

GN (x, y)µ(y)dSy

−1

2

∫
∂Ω+

GN (x, y∗)µ(y)dSy =
1

2

∫
Ω

(GN (x, y)−GN (x, y∗)) f(y)dy

+
1

2

∫
∂Ω+

(GN (x, y)−GN (x, y∗))µ(y)dSy.

Next, plugging the functions f+(y) and τ+(y) into the representation of V (x), we obtain

V (x) =
1

2

∫
Ω

GD(x, y) (f(y) + f (y∗)) dy − 1

1− α

 ∫
∂Ω+

∂GD(x, y)

∂ny
(τ(y)− (1 + α)U(y))dSy

+

∫
∂Ω−

∂GD(x, y)

∂ny
(τ (y∗)− (1 + α)U (y∗)) dSy

 =
1

2

∫
Ω

(GD(x, y) +GD (x, y∗)) f(y)dy

− 1

1− α

∫
∂Ω+

(
∂GD(x, y)

∂ny
+
∂GD (x, y∗)

∂ny

)
τ(y)dSy

+
1 + α

1− α

∫
∂Ω+

(
∂GD(x, y)

∂ny
+
∂GD(x, y∗)

∂ny

)
U(y)dSy.

Now, we combine them to get

u(x) = U(x) + V (x) =
1

2

∫
Ω

(GN (x, y)−GN (x, y∗) +GD(x, y) +GD (x, y∗)) f(y)dy

+
1 + α

1− α

∫
∂Ω+

(
∂GD(x, y)

∂ny
+
∂GD(x, y∗)

∂ny

)

×

1

2

∫
Ω

(GN (y, z)−GN (y, z∗)) f(z)dz

 dSy +
1

2

∫
∂Ω+

(GN (x, y)−GN (x, y∗))µ(y)dSy

+
1 + α

1− α

∫
∂Ω+

(
∂GD(x, y)

∂ny
+
∂GD(x, y∗)

∂ny

)

Kazakh Mathematical Journal, 20:1 (2020) 84–94



On boundary value problem of the Samarskii-Ionkin type ... 93

×

1

2

∫
∂Ω+

(GN (y, z)−GN (y, z∗))µ(z)dSz

 dSy

− 1

1− α

∫
∂Ω+

(
∂GD(x, y)

∂ny
+
∂GD (x, y∗)

∂ny

)
τ(y)dSy. (35)

Thus, we have proved the following theorem.

Theorem 3. Let α 6= 1 and let the natural matching conditions (22) be satisfied. Then for
all f(x) ∈ Cε(Ω̄), τ(x) ∈ C1+ε[∂Ω+], µ ∈ Cε[∂Ω+], 0 < ε < 1, the solution to the problem
Sα1 (19)-(21) exists, is unique and can be represented in the form (35). This solution belongs
to C2+ε(Ω) ∩ C1+ε(Ω̄\∂Ω0).
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Дукенбаева А.А., Садыбеков М.А. ШАРДАҒЫ ЛАПЛАС ОПЕРАТОРЫ ҮШIН
САМАРСКИЙ-ИОНКИН ТЕКТЕС ШЕТТIК ЕСЕБI ЖАЙЛЫ

Бұл жұмыста шардағы Лаплас операторы үшiн Самарский-Ионкин есебiнiң көп өл-
шемдi жалпыламасы болып табылатын бейлокал шеттiк есебi қарастырылды. Есептiң
қисындылығы зерттелдi және шешiмнiң интегралдық кейiптемесi алынды.

Кiлттiк сөздер. Лаплас операторы, Пуассон теңдеуi, шекаралық есеп, бейлокал шет-
тiк есеп, Самарский-Ионкин есебi.

Дукенбаева А.А., Садыбеков М.А. ОБ ОДНОЙ КРАЕВОЙ ЗАДАЧЕ ТИПА
САМАРСКОГО-ИОНКИНА ДЛЯ ОПЕРАТОРА ЛАПЛАСА В ШАРЕ

В данной работе рассматривается нелокальная краевая задача для оператора Лапла-
са в шаре, являющаяся многомерным обобщением задачи Самарского-Ионкина. Иссле-
дована корректность задачи и получено интегральное представление решения.

Ключевые слова. Оператор Лапласа, уравнение Пуассона, краевая задача, нелокаль-
ная краевая задача, задача Самарского-Ионкина.
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Abstract. In this paper, we study a boundary value problem with a parameter for the Mathieu equation

with cubic nonlinearity. The boundary condition of this problem is periodic. An additional condition

is given to determine the unknown parameter. We present a numerical algorithm to solve the problem

under consideration.

Keywords. Mathieu’s equation with parameter, numerical algorithm, Newton’s method.

The Mathieu equation appears in applied mathematics and many engineering fields; see
[1] and references therein. This equation includes numerical parameters which characterize
effect of various factors on the behavior of processes studied. For finding their values we
need to impose some additional conditions. Various problems for differential problems with
parameters have been investigated in [2]–[8].

We consider the Mathieu equation with a parameter that is expressed via two quasilinear
ordinary differential equations of the first order

dx1
dt

= x2, t ∈ (0, T ), (1)

dx2
dt

= −x1 + ε[α cos(2t)x1 + βx31] + µ sin(2t) + g(t), t ∈ (0, T ), (2)
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subject to the periodic boundary conditions

x1(0) = x1(T ), x2(0) = x2(T ), (3)

and additional condition

x1(0) = x01, (4)

where ε > 0, α, β, and x01 are some given numbers, and g(t) is a continuous on [0, T] function.

By a solution to problem (1)–(4) we mean a triple (µ∗, x∗1(t), x
∗
2(t)), where µ∗ ∈ R and

x∗1(t), x
∗
2(t) are continuous on [0, T] and continuously differentiable on (0,T) functions, sat-

isfying conditions (3), (4) and system (1), (2) with µ = µ∗.

The aim of this paper is to develop a numerical algorithm for solving problem (1)–(4)
based on the method proposed in [9], [10].

We reduce the problem under consideration to a problem with an additional parameter
λ that is chosen as the value of the function x2(t) at the point t = 0: λ

.
= x2(0). Then, by

substituting u1(t) = x1(t) − x01, u2(t) = x2(t) − λ, problem (1)–(4) is transformed into the
following problem:

du1
dt

= u2 + λ, t ∈ (0, T ) (5)

du2
dt

= −(u1 + x01) + ε[α cos(2t)(u1 + x01) + β(u1 + x01)
3] + µ sin(2t) + g(t), t ∈ (0, T ), (6)

u1(0) = 0, u2(0) = 0, (7)

u1(T ) = 0, u2(T ) = 0. (8)

A solution to problem (5)–(8) is a quadruple (µ∗, λ∗, u∗1(t), u
∗
2(t)), where µ∗, λ∗ ∈ R and

functions u∗1(t), u
∗
2(t) satisfy the system of nonlinear differential equations (5), (6) and con-

ditions (7), (8) with µ = µ∗ and λ = λ∗. Obviously, if this quadruple is a solution to problem
(5)–(8), then the triple (µ∗, x∗1(t), x

∗
2(t)) with x∗1(t) = u∗1(t) − x01 and x∗2(t) = u∗2(t) − λ∗ is a

solution to problem (1)–(4).

Let us choose some numbers λ(0), µ(0), ρλ > 0, and ρµ > 0. Suppose that the Cauchy
problem (5)–(7) has a unique solution u(t, λ, µ) = (u1(t, λ, µ), u2(t, λ, µ)) for all λ ∈ (λ0 −
ρλ, λ0+ρλ) and µ ∈ (µ0−ρµ, µ0+ρµ). By substituting the value u(T, λ, µ) into the boundary
condition (8), we get the following system of nonlinear algebraic equations in parameters λ
and µ:

u1(T, λ, µ) = 0, (9)

u2(T, λ, µ) = 0. (10)

Problem (5)–(8) is solvable if the system of algebraic equations (9), (10) has a solution
(λ∗, µ∗) ∈ (λ(0) − ρλ, λ(0) + ρλ)× (µ(0) − ρµ, µ(0) + ρµ).
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We represent system (9)–(10) in the vector form

Q∗(λ, µ) = 0, (11)

and find its solution applying Newton’s method taking as an initial assumption the pair
(λ(0), µ(0)) that we have arbitrarily chosen as the centers of the above-mentioned intervals.
The question now arises: how to choose a good initial assumption that is close enough to
the exact solution? If we take into account that ε > 0 is a small number, it is reasonable to
determine the values of λ(0) and µ(0) by solving problem (5)–(8) for ε = 0. In this case, we
get the linear boundary value problem with parameters

du

dt
= A(t)(u+ λ̃) +B(t)µ+ f(t), t ∈ (0, T ), (12)

u(0) = 0, (13)

u(T ) = 0, (14)

where λ̃ =

(
x01
λ

)
, A(t) =

(
0 1
−1 0

)
, B(t) =

(
0

sin(2t)

)
, f(t) =

(
0
g(t)

)
.

As is known, for fixed λ̃ and µ, the Cauchy problem for the linear differential equation
(12) subject to the initial condition (13) has a unique solution u(t, λ̃, µ). Let Φ(t) be a
fundamental matrix of the differential equation dx

dt = A(t)x, t ∈ [0, T ]. We can then represent
the solution to (12), (13) in the form

u(t, λ̃, µ) = Φ(t)

t∫
0

Φ−1(τ)A(τ)dτλ̃+ Φ(t)

t∫
0

Φ−1(τ)B(τ)dτµ

+Φ(t)

t∫
0

Φ−1(τ)f(τ)dτ, t ∈ [0, T ]. (15)

Let us consider an auxiliary Cauchy problem

dz

dt
= A(t)z + P (t), t ∈ [0, T ], z(0) = 0, (16)

where P (t) is a (2× 2) matrix or a vector of the dimension 2 that is continuous on [0,T]. By
a(P, t) we denote the unique solution to problem (16), which can be written as

a(P, t) = Φ(t)

t∫
0

Φ−1(τ)P (τ)dτ, t ∈ [0, T ].

Kazakh Mathematical Journal, 20:1 (2020) 95–102



98 Dulat S. Dzhumabaev , Yekaterina S. La, Akmaral A. Pussurmanova, Zhanerke Zh. Kisash

Then, solution (15) to the Cauchy problem (12), (13) can be represented through a(P, t)
as

u(t, λ̃, µ) = a(A, t)λ̃+ a(B, t)µ+ a(f, t). (17)

Substituting the right-hand side of (17) into the boundary condition (14), we get the
system of linear algebraic equation in parameters λ and µ:(

α11 α12

α21 α22

)(
x01
λ

)
+

(
β1
β2

)
µ+

(
γ1
γ2

)
= 0,

where

(
α11 α12

α21 α22

)
= a(A, T ),

(
β1
β2

)
= a(B, T ) and

(
γ1
γ2

)
= a(f, T ).

Rewrite this system in an equivalent form

α12λ+ β1µ = −γ1 − α11x
0
1, α22λ+ β2µ = −γ2 − α21x

0
1. (18)

We will use the solution to (18), the pair (λ(0), µ(0)), as an initial assumption for the
solution of (11) when applying Newton’s method.

Now that we have got the initial approximation, we are in position to continue the iterative
process for finding the solution to the system of nonlinear algebraic equations (11). The
successive approximations are determined by the formula(

λ(n+1)

µ(n+1)

)
=

(
λ(n)

µ(n)

)
−

[
∂Q∗(λ

(n), µ(n))

∂y

]−1

Q∗(λ
(n), µ(n)), n = 0, 1, . . . , (19)

where

∂Q∗(λ
(n), µ(n))

∂y
=

(
∂u1(T,λ(n),µ(n))

∂λ
∂u1(T,λ(n),µ(n))

∂µ
∂u2(T,λ(n),µ(n))

∂λ
∂u2(T,λ(n),µ(n))

∂µ

)
.

The vector Q∗(λ
(n), µ(n)) in (19) is determined as

Q∗(λ
(n), µ(n)) =

(
u1(T, λ

(n), µ(n))

u2(T, λ
(n), µ(n))

)
,

where u1(t, λ
(n), µ(n)) and u2(t, λ

(n), µ(n)) are the solutions to the Cauchy problems (5), (7)
and (6), (7) with given λ = λ(n) and µ = µ(n).

In order to determine the elements of the Jacobi matrix ∂Q∗(λ(n),µ(n))
∂y in (19), we will use

the following equalities

du1(t, λ
(n), µ(n))

dt
= u2(t, λ

(n), µ(n)) + λ(n), t ∈ (0, T ), (20)
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du2(t, λ
(n), µ(n))

dt
= −(u1(t, λ

(n), µ(n)) + x01) + ε[α cos(2t)(u1(t, λ
(n), µ(n)) + x01)

+β(u1(t, λ
(n), µ(n)) + x01)

3] + µ sin(2t) + g(t), t ∈ (0, T ), (21)

u1(0, λ
(n), µ(n)) = 0, u2(0, λ

(n), µ(n)) = 0, (22)

which hold true for any pair (λ(n), µ(n)) ∈ (λ(0) − ρλ, λ(0) + ρλ)× (µ(0) − ρµ, µ(0) + ρµ).

To find the elements of the first column of the Jacobi matrix, we differentiate both sides
of each of the equations (20)–(22) with respect to λ. We get

d

dt

(
∂u1(t, λ

(n), µ(n))

∂λ

)
=
∂u2(t, λ

(n), µ(n))

∂λ
+ 1, t ∈ [0, T ],

d

dt

(
∂u2(t, λ

(n), µ(n))

∂λ

)
= (−1 + εα cos(2t) + 3εβ[u1(t, λ

(n), µ(n)) + x01]
2)
∂u1(t, λ

(n), µ(n))

∂λ
,

∂u1(0, λ
(n), µ(n))

∂λ
= 0,

∂u2(0, λ
(n), µ(n))

∂λ
= 0.

It can be seen from these equations that the functions v
(n)
1 (t) = ∂u1(t,λ(n),µ(n))

∂λ , v
(n)
2 (t) =

∂u2(t,λ(n),µ(n))
∂λ satisfy the following Cauchy problems for ordinary differential equations

dv1
dt

= v2 + 1, t ∈ [0, T ], (23)

dv2
dt

= (−1 + εα cos(2t) + 3εβ[x
(n)
1 (t)]2)v1, t ∈ [0, T ], (24)

v1(0) = 0, v2(0) = 0, (25)

where x
(n)
1 (t) = u1(t, λ

(n), µ(n)) + x01.

In the same way we determine the elements of the second column of the Jacobi matrix.
Differentiating both sides of (20)–(22) with respect to µ, we conclude that the functions

w
(n)
1 (t) = ∂u1(t,λ(n),µ(n))

∂µ , w
(n)
2 (t) = ∂u2(t,λ(n),µ(n))

∂µ are the solutions to the Cauchy problems for
ordinary differential equations

dw1

dt
= w2, t ∈ [0, T ], (26)

dw2

dt
= (−1 + εα cos(2t) + 3εβ[x

(n)
1 (t)]2)w1 + sin(2t), t ∈ [0, T ], (27)

w1(0) = 0, w2(0) = 0. (28)
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Thus, the Jacobi matrix is determined as

∂Q∗(λ
(n), µ(n))

∂y
=

(
v
(n)
1 (T ) v

(n)
2 (T )

w
(n)
1 (T ) w

(n)
2 (T )

)
,

where (v
(n)
1 (t), v

(n)
2 (t)) and (w

(n)
1 (t), w

(n)
2 (t)) are the solutions to the Cauchy problems (23)–

(25) and (26)–(28), respectively.
Summarizing the above, we propose the following numerical algorithm for solving the

quasi-linear boundary value problem with parameter (1)–(4).

Step 0. Set the initial assumption (λ(0), µ(0)) for parameters (λ, µ) as a solution to the
system of linear algebraic equations (18) with coefficients determined by solving the auxiliary
Cauchy problems (16).

Step 1.

(a) Solve the Cauchy problem (5)–(7) with λ = λ(0) and µ = µ(0) by the fourth-order
Runge-Kutta method with a step size h > 0 : 2Nh = T . Use the numerical solution
u(t̂, λ(0), µ(0)), where t̂ = {0, h, . . . , (2N − 1)h, 2Nh}, to construct the vector Q∗(λ

(0), µ(0)) =(
u1(T, λ

(0), µ(0))

u2(T, λ
(0), µ(0))

)
and the function x

(0)
1 (t) = x01 + u1(t̂, λ

(0), µ(0)).

(b) Solve the Cauchy problems (23)–(25) and (26)–(28) by the fourth-order Runge-Kutta
method with the step size h1 = 2h (we have to double the step size since we know the values

of x
(0)
1 (t) only on the grid {0, h, . . . , (2N − 1)h, 2Nh}). Use the numerical solutions v

(0)
1 (t̂),

v
(0)
2 (t̂) and w

(0)
1 (t̂), w

(0)
2 (t̂) to construct the Jacobi matrix

∂Q∗(λ
(0), µ(0))

∂y
=

(
v
(0)
1 (T ) v

(0)
2 (T )

w
(0)
1 (T ) w

(0)
2 (T )

)
.

(c) Assuming that the matrix ∂Q∗(λ(0),µ(0))
∂y is invertible, determine the next approximation

to the solution of (11) by the formula(
λ(1)

µ(1)

)
=

(
λ(0)

µ(0)

)
−

[
∂Q∗(λ

(0), µ(0))

∂y

]−1

Q∗(λ
(0), µ(0)).

As we continue this process, at the n-th step we find (λ(n), µ(n)), u1(t, λ
(n), µ(n)) and

u2(t, λ
(n), µ(n)), n = 1, 2, . . . . The convergence conditions for the iterative process in terms of

Q∗(λ, µ) and its Jacobi matrix are given in Theorem 4.1 [10, p.1019].

Example. Let us consider problem (1)–(4) with T = 2, α = 0, β = 1, ε = 0.1, g(t) =
(1− π2) sin(πt) + 1− 0.1(sinπt+ 1)3 − 2 sin(2t), x01 = 1. The exact solution to the problem

is the pair (µ∗, x∗(t)), where µ∗ = 2, x∗(t) =

(
sin(πt) + 1
π cos(πt)

)
.
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At each step of the algorithm proposed, we solve Cauchy problems for ordinary differential
equations by the fourth-order Runge-Kutta method. Let us take the step size h = 0.1.

By solving the linear boundary value problem (12)–(14) we obtain (λ(0), µ(0)) =
(3.16785, 2.52888). Starting with this initial approximation, we perform the iterative process.

Iteration 1. Q∗(λ
(0), µ(0)) =

(
0.529103
0.100919

)
, ∂Q∗(λ(0),µ(0))

∂y =

(
1.50188 0.958459
−1.05907 0.322619

)
,

(λ(1), µ(1)) = (3.11852, 2.05414).

Iteration 2. Q∗(λ
(1), µ(1)) =

(
0.0188694
0.0408092

)
, ∂Q∗(λ(1),µ(1))

∂y =

(
1.3985 0.924797
−1.24978 0.221606

)
,

(λ(2), µ(2)) = (3.14141, 1.99911).

Iteration 3. Q∗(λ
(2), µ(2))=

(
−0.00107237
0.00000000

)
, ∂Q∗(λ(2),µ(2))

∂y =

(
1.4036 0.925345
−1.25054 0.220128

)
,

(λ(3), µ(3)) = (3.1416, 1.99999).

Iteration 8. Q∗(λ
(7), µ(7))=

(
−0.00000000
−0.00000000

)
, ∂Q∗(λ(7),µ(7))

∂y =

(
1.4038 0.925399
−1.25027 0.22027

)
,

(λ(8), µ(8)) = (3.1416, 2.00002).

The comparison with the exact solution (λ∗, µ∗) = (π, 2) gives

‖λ(8) − λ∗‖ < 0.0011, ‖µ(8) − µ∗‖ < 0.00003.
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Жұмабаев Д.С. , Ла Е.С., Пұсұрманова А.А., Кисаш Ж.Ж. МАТЬЕ ТЕҢДЕУI
ҮШIН ПАРАМЕТРI БАР СЫЗЫҚТЫҚ ЕМЕС ШЕТТIК ЕСЕПТI ШЕШУ АЛГОРИТ-
МI

Бұл мақалада кубтық сызықсыздығы бар Матье теңдеуi үшiн параметрi бар шеттiк
есептi қарастырамыз. Бұл есептiң шеттiк шарты периодты болып табылады. Белгiсiз па-
раметрдi анықтау үшiн қосымша шарт берiледi. Қарастырылып отырған есептi шешуге
арналған сандық алгоритмдi ұсынамыз.

Кiлттiк сөздер. Параметрi бар Матье теңдеуi, сандық алгоритм, Ньютон әдiсi.

Джумабаев Д.С. , Ла Е.С., Пусурманова А.А., Кисаш Ж.Ж. АЛГОРИТМ РЕШЕ-
НИЯ НЕЛИНЕЙНОЙ КРАЕВОЙ ЗАДАЧИ С ПАРАМЕТРОМ ДЛЯ УРАВНЕНИЯ МА-
ТЬЕ

В этой статье мы рассматриваем краевую задачу с параметром для уравнения Матье
с кубической нелинейностью. Краевое условие данной задачи является периодическим.
Задано дополнительное условие для определения неизвестного параметра. Мы предла-
гаем численный алгоритм решения рассматриваемой задачи.

Ключевые слова. Уравнение Матье с параметром, численный алгоритм, метод Нью-
тона.
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Abstract. In the present paper, we study a multipoint boundary value problem for a system of Fred-

holm integro-differenial equations by the method of parameterization.The case of a degenerate kernel is

studied separately, for which we obtain well-posedness conditions and propose some algorithms to find

approximate and numerical solutions to the problem. Then we establish necessary and sufficient con-

ditions for the well-posedness of the multipoint problem for the system of Fredholm integro-differential

equations and develop some algorithms for finding its approximate solutions. These algorithms are

based on the solutions of an approximating problem for the system of integro-differential equations with

degenerate kernel.

Keywords. Fredholm integro-differential equation, multipoint problem, parameterization method, algo-

rithm, solvability criteria.

1 Introduction

Various types of multipoint problems for differential and integro-differential equations
have been studied by many researchers, see [1]–[15]. A number of methods have been applied
to solve these problems, e.g., methods of qualitative theory of differential equations, the
method of Green’s functions, the method of upper and lower solutions, numerical-analytical
methods. However, the problem of establishing effective criteria for the unique solvability of
multipoint problems for integro-differential equations, as well as developing algorithms for
finding their approximate and numerical solutions, still remains open.
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One of the constructive methods for investigation and solving boundary value problems for
ordinary differential equations and integro-differential equations is the method of parameteri-
zation proposed by Dzhumabaev [16]. This method was originally developed for studying and
solving boundary value problems for the systems of ordinary differential equations. In [16],
coefficient criteria were established for the unique solvability of linear boundary value prob-
lems. An algorithm for finding their approximate solutions was developed. The method of
parameterization was later extended to linear multipoint boundary value problems [10], [11],
for which necessary and sufficient conditions were obtained for the unique solvability in terms
of the initial data and the algorithm for finding their approximate solutions was proposed.
In [17]–[20], the method of parameterization was applied to the two-point boundary value
problems for Fredholm integro-differential equations to establish criteria for their solvability
and the unique solvability. For these problems, based on the method of parameterization and
a new concept of a general solution, novel algorithms for approximate and numerical solutions
were developed, see [21]–[23]. The results obtained in the above-mentioned papers were used
to investigate a multipoint boundary value problem for loaded differential equations [4] and
the boundary value problem with a parameter for Fredholm integro-differential equations [3].

Consider the multipoint boundary value problem for the system of integro-differential
equations

dx

dt
= A(t)x+

T∫
0

K(t, τ)x(τ)dτ + f(t), x ∈ Rn, t ∈ (0, T ), (1.1)

m∑
i=0

Bix(ti) = d, d ∈ Rn. (1.2)

Here x(t) = col(x1(t), x2(t), ..., xn(t)) is an unknown function, (n × n) matrix A(t) and n-
vector f(t) are continuous on [0, T ], (n×n) matrix K(t, τ) is continuous on [0, T ]× [0, T ], Bi
are constant (n× n) matrices, 0 = t0 < t1 < t2 < ... < tm−1 < tm = T , ‖x‖ = max

i=1,n
|xi|.

The solution to multipoint problem (1.1), (1.2) is a function x∗(t) : [0, T ] → Rn that
is continuous on [0, T ], continuously differentiable on (0, T ) and satisfies integro-differential
equations (1.1) and multipoint condition (1.2).

The aim of the present paper is to obtain criteria for the unique solvability of problem
(1.1), (1.2) and develop algorithms for finding its approximate solutions. To this end, the
parameterization method is used. The interval [0, T ] is partitioned and additional parameters
are introduced as the values of the desired solution at the left endpoints of the partition
subintervals. When applying the method of parameterization to problem (1.1), (1.2), some
intermediate problems occur, so called special Cauchy problems for integro-differential
equations with parameters. The questions of solvability and unique solvability of such
problems were thoroughly investigated in [17]–[23].
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Section 2 is devoted to the study of Fredholm integro-differential equations with degener-
ate kernel. We divide [0, T ] into m parts and introduce additional parameters as the values of
the desired solution at the left endpoints t = ti, i = 0,m− 1, of the subintervals. The unique
solvability of a special Cauchy problem for the ∆m partition is equivalent to the invertibility
of a matrix I−G(∆m) constructed through a fundamental matrix of the differential part and
the matrices of the integral kernel. The ∆m partition is called regular if the matrix I−G(∆m)
is invertible (see [21]). For the regular ∆m partition, a system of linear algebraic equations
in the parameters introduced is constructed using [I − G(∆m)]−1, the multipoint condition
(1.2), and the continuity conditions at the interior partition points t = ti, i = 1,m− 1. It
is shown that the invertibility of the matrix of the system constructed is equivalent to the
unique solvability of the multipoint boundary value problem under consideration.

In Section 3, we develop the algorithms for finding a solution to a multipoint boundary
value problem for the integro-differential equation with degenerate kernel. For the chosen
∆m partition, the matrix G(∆m) is calculated. If there is an inverse of I − G(∆m), then
we construct a system of linear algebraic equations. The elements of G(∆m), the coefficients
and right-hand side of the system are determined by the solutions of the Cauchy problems
for ordinary differential equations and the values of the definite integrals of some functions
over the partition subintervals. By solving the system of algebraic equations, we determine
the values of the solution at the left endpoints of the subintervals. Next, using the values
obtained and the data of the integro-differential equation we compose a function F∗(t) that
is continuous on [0, T ]. Solving the Cauchy problems for ordinary differential equations with
the right-hand side F∗(t), we get the values of the desired solution at the remaining points of
the interval [0, T ]. If a fundamental matrix of the differential part is found explicitly and the
integrals are evaluated exactly, then the algorithm allows us to find a closed-form solution
as well. As is known, it is usually impossible to explicitly find the fundamental matrix for
a system of ordinary differential equations with variable coefficients, and, in general, only
approximate values of definite integrals can be obtained. For this reason, in this section we
propose a numerical implementation of the algorithm. The Cauchy problems for ordinary
differential equations on the subintervals are solved by the fourth-order Runge-Kutta method;
the integrals are calculated by the Simpson formula. It should be noted that the elements of
the matrix G(∆m), the coefficients and the right-hand side of the system of algebraic equa-
tions in parameters can be evaluated by parallel computing on the partition subintervals.

In Section 4, a multipoint boundary value problem is considered for the Fredholm integro-
differential equation when the integral kernel is not degenerate. We approximate the kernel
by the degenerate one and then use the results obtained in Section 2. At each step of the
process, the multipoint boundary value problem for the integro-differential equation with
degenerate kernel is solved. We establish sufficient conditions for the convergence of the
iterative process to a solution of the multipoint boundary value problem for the Fredholm
integro-differential equation with non-degenerate kernel. The accuracy of the approximate
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solution depends on the choice of the approximating kernel and the number of iteration
steps. The necessary and sufficient conditions for the well-posedness of the multipoint prob-
lem (1.1), (1.2) are obtained in terms of the properties of solutions to approximating problems
for integro-differential equations with degenerate kernels.

2 The well-posedness of multipoint problems for Fredholm integro-differential
equations with degenerate kernel

Consider the integro-differential equation

dx

dt
= A(t)x+

k∑
j=1

T∫
0

ϕj(t)ψj(τ)x(τ)dτ + f(t), t ∈ (0, T ), x ∈ Rn, (2.1)

subject to the multipoint condition

m∑
i=0

Bix(ti) = d, d ∈ Rn, (2.2)

where the matrices A(t), ϕj(t), ψj(τ), j = 1, k, and the vector f(t) are continuous on [0, T ],
‖x‖ = max

i=1,n
|xi|.

The interval [0, T ) is divided into m parts by the points t0 = 0 < t1 < . . . < tm = T , and

the partition [0, T ) =

m⋃
r=1

[tr−1, tr) is denoted by ∆m. The case of no partitioning the interval

[0, T ] is denoted by ∆1.

We introduce the following spaces: C([0, T ], Rn) is the space of continuous functions
x : [0, T ]→ Rn with the norm ‖x‖1 = max

t∈[0,T ]
‖x(t)‖;

C([0, T ],∆N , R
nm) is the space of function systems x[t] = (x1(t), x2(t), . . . , xm(t)), where

functions xr : [tr−1, tr) → Rn are continuous and have finite left-handed limits lim
t→tr−0

xr(t)

for all r = 1,m, with the norm ‖x[·]‖2 = max
r=1,m

sup
t∈[tr−1,tr)

‖xr(t)‖.

Let xr(t) be the restriction of the function x(t) to the rth subinterval [tr−1, tr), i.e. xr(t) =
x(t), t ∈ [tr−1, tr), r = 1,m.

We introduce additional parameters λr = xr(tr−1) and make the substitution xr(t) =
ur(t) + λr on each rth subinterval. Multipoint problem (2.1), (2.2) is then reduced to the
following problem with parameters:

dur
dt

=A(t)(ur+λr)+
m∑
s=1

k∑
j=1

ts∫
ts−1

ϕj(t)ψj(τ)[ur(τ)+λr]dτ+f(t), t ∈ (tr−1, tr), r = 1,m, (2.3)
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ur(tr−1) = 0, r = 1,m, (2.4)

m−1∑
i=0

Biλi+1 +Bmλm +Bm lim
t→T−0

um(t) = d, (2.5)

λp + lim
t→tp−0

up(t)− λp+1 = 0, p = 1,m− 1, (2.6)

where (2.6) are the continuity conditions for the solution at the interior points of the partition
∆m. Note that conditions (2.6) and integro-differential equations (2.3) ensure the continuity
of the derivative of the solution at those points.

If x∗(t) is a solution to multipoint problem (2.1),(2.2), then the pair (λ∗, u∗[t]) with
elements λ∗ = (λ∗1, λ

∗
2, . . . , λ

∗
m) ∈ Rnm, u∗[t] =

(
u∗1(t), u

∗
2(t), . . . , u

∗
m(t)

)
∈ C([0, T ],∆m, R

nm),
where λ∗r = x∗(tr−1), u

∗
r(t) = x∗(t)−x∗(tr−1), [tr−1, tr), r = 1,m, is a solution to the problem

with parameters (2.3)–(2.6). Vice versa, if a pair (λ̃, ũ[t]) with elements λ̃ = (λ̃1, λ̃2, . . . , λ̃m) ∈
Rnm, ũ[t] =

(
ũ1(t), ũ2(t), . . . , ũm(t)

)
∈ C([0, T ],∆m, R

nm), is a solution to problem with

parameters (2.3)–(2.6), then the function x̃(t) defined as x̃(t) = λ̃r + ũr(t), t ∈ [tr−1, tr),
r = 1,m, x̃(T ) = λ̃m + lim

t→T−0
ũm(t), is a solution to the original problem (2.1), (2.2).

If Xr(t) is a fundamental matrix of the differential equation
dxr
dt

= A(t)xr on [tr−1, tr],

then the special Cauchy problem for the system of integro-differential equations with param-
eters (2.3), (2.4) is reduced to the equivalent system of integral equations

ur(t) =

= Xr(t)

t∫
tr−1

X−1r (τ)A(τ)dτλr +Xr(t)

t∫
tr−1

X−1r (τ)
m∑
s=1

k∑
j=1

ts∫
ts−1

ϕj(τ)ψj(τ1)us(τ1)dτ1dτ

+Xr(t)

t∫
tr−1

X−1r (τ)

m∑
s=1

k∑
j=1

ts∫
ts−1

ϕj(τ)ψj(τ1)dτ1dτλs

+Xr(t)

t∫
tr−1

X−1r (τ)f(τ)dτ, t ∈ [tr−1, tr), r = 1,m. (2.7)

Setting µj =

m∑
s=1

ts∫
ts−1

ψj(τ)us(τ)dτ , rewrite (2.7) in the following way:

ur(t) =
k∑
j=1

Xr(t)

t∫
tr−1

X−1r (τ)ϕj(τ)dτµj +Xr(t)

t∫
tr−1

X−1r (τ)

[
A(τ)λr
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+

k∑
j=1

ϕj(τ)

m∑
s=1

ts∫
ts−1

ψj(τ1)dτ1λs + f(τ)

]
dτ, t ∈ [tr−1, tr), r = 1,m. (2.8)

Multiplying both sides of (2.8) by ψp(t), integrating them over [tr−1, tr], and sum-
ming up with respect to r, we get the following system of linear algebraic equations in
µ = (µ1, . . . , µk) ∈ Rnk:

µp =

k∑
l=1

Gp,l(∆m)µl +

m∑
r=1

Vp,r(∆m)λr + gp(f,∆m), p = 1, k, (2.9)

with (n× n) matrices

Gp,l(∆m) =

m∑
r=1

tr∫
tr−1

ψp(τ)Xr(τ)

τ∫
tr−1

X−1r (τ1)ϕl(τ1)dτ1dτ, (2.10)

Vp,r(∆m) =

tr∫
tr−1

ψp(τ)Xr(τ)

τ∫
tr−1

X−1r (τ1)A(τ1)dτ1dτ

+

m∑
s=1

k∑
j=1

ts∫
ts−1

ψp(τ)Xs(τ)

τ∫
ts−1

X−1s (τ1)ϕj(τ1)dτ1dτ

tr∫
tr−1

ψj(τ2)dτ2, (2.11)

and vectors of the dimension n

gp(f,∆m) =

m∑
r=1

tr∫
tr−1

ψp(τ)Xr(τ)

τ∫
tr−1

X−1r (τ1)f(τ1)dτ1dτ, p = 1, k, j = 1, k. (2.12)

Using matrices Gp,l(∆m) and Vp,r(∆m), we construct matrices G(∆m) = (Gp,l(∆m)), p, l =
1, k, and V (∆m) = (Vp,r(∆m)), p = 1, k, r = 1,m. Then, system (2.9) can be rewritten in
the form

[I −G(∆m)]µ = V (∆m)λ+ g(f,∆m), (2.13)

where I is the identity matrix of the dimension nk, g(f,∆m) = (g1(f,∆m), . . . , gk(f,∆m)) ∈
Rnk.

Definition 1. The partition ∆m is said to be regular if the matrix I −G(∆m) is invertible.

Any fundamental matrix of the differential equation
dxr
dt

= A(t)xr on [tr−1, tr] can be

represented as Xr(t) = X0
r (t) · Cr, where X0

r (t) is the normalized fundamental matrix
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(X0
r (tr−1) = I) and Cr is an arbitrary invertible matrix. Thus, the following equalities

hold true

Gp,l(∆m) =
m∑
r=1

tr∫
tr−1

ψp(τ)X0
r (τ)Cr

τ∫
tr−1

[X0
r (τ1)Cr]

−1ϕl(τ1)dτ1dτ

=

m∑
r=1

tr∫
tr−1

ψp(τ)X0
r (τ)

τ∫
tr−1

[X0
r (τ1)]

−1ϕl(τ1)dτ1dτ,

and the regularity of the ∆m partition does not depend on the choice of the fundamental
matrix for the differential part of the equation.

Let us denote by σ(k, [0, T ]) the set of regular partitions ∆m of the interval [0, T ] for
equation (2.1).

Definition 2. The special Cauchy problem (2.3),(2.4) is called uniquely solvable if it has a
unique solution for any λ ∈ Rnm and f(t) ∈ C([0, T ], Rn).

The special Cauchy problem (2.3), (2.4) is equivalent to the system of integral equations
(2.7). Since the kernel of (2.7) is degenerate, this system, in turn, is equivalent to the system
of algebraic equations (2.9) in µ = (µ1, . . . , µk) ∈ Rnk. Therefore, the special Cauchy problem
is uniquely solvable if and only if the ∆m partition, generating this problem, is regular. Since
the special Cauchy problem is uniquely solvable for a partition with a sufficiently small step
size h > 0 (see [17, p.1152]), the set σ(k, [0, T ]) is not empty.

Let us take a partition ∆m ∈ σ(k, [0, T ]) and represent the matrix [I −G(∆m)]−1 in the

form [I − G(∆m)]−1 =
(
Mj,p(∆m)

)
, j, p = 1, k, where Mj,p(∆m) are square matrices of the

dimension n.
Then, taking into account (2.13), we can determine elements of the vector µ ∈ Rnk from

the equalities

µj =
m∑
i=1

( k∑
p=1

Mj,p(∆m)Vp,i(∆m)
)
λi +

k∑
p=1

Mj,p(∆m)gp(f,∆m), j = 1, k. (2.14)

In (2.8), by replacing µj with the right-hand side of (2.14), we get the representation of the
functions ur(t) through λi, i = 1,m :

ur(t) =
m∑
i=1

{ k∑
j=1

Xr(t)

t∫
tr−1

X−1r (τ)ϕj(τ)dτ

[ k∑
p=1

Mj,p(∆m)Vp,i(∆m) +

ti∫
ti−1

ψj(τ1)dτ1

]}
λi

+Xr(t)

t∫
tr−1

X−1r (τ)A(τ)dτλr
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+Xr(t)

t∫
tr−1

X−1r (τ)

[ k∑
j=1

ϕj(τ)
k∑
p=1

Mj,p(∆m)gp(f,∆m)+f(τ)

]
dτ, t ∈ [tr−1, tr), r = 1,m. (2.15)

We will use the following notation:

Dr,i(∆m) =

k∑
j=1

Xr(tr)

t∫
tr−1

X−1r (τ)ϕj(τ)dτ

[ k∑
p=1

Mj,p(∆m)Vp,i(∆m)

+

ti∫
ti−1

ψj(τ1)dτ1

]
, i 6= r, r, j = 1,m, (2.16)

Dr,r(∆m) =

k∑
j=1

Xr(tr)

t∫
tr−1

X−1r (τ)ϕj(τ)dτ

[ k∑
p=1

Mj,p(∆m)Vp,r(∆m) +

tr∫
tr−1

ψj(τ1)dτ1

]

+Xr(tr)

t∫
tr−1

X−1r (τ)A(τ)dτ, (2.17)

Fr(∆m) = Xr(t)

t∫
tr−1

X−1r (τ)

[ k∑
j=1

ϕj(τ)
k∑
p=1

Mj,p(∆m)gp(f,∆m) + f(τ)

]
dτ, r = 1,m. (2.18)

From (2.15), we find the limits

lim
t→tr−0

ur(t) =
m∑
i=1

Dr,i(∆m)λi + Fr(∆m). (2.19)

Substituting the right-hand side of (2.19) into condition (2.5) and continuity conditions (2.6),
we get the following system of linear algebraic equations in parameters λr, r = 1,m:

m−2∑
i=0

[Bi +BmDr,i+1(∆m)]λi+1 + [Bm−1 +Bm +BmDr,m(∆m)]λm = d−BmFm(∆m), (2.20)

[I+Dp,p(∆m)]λp−[I−Dp,p+1(∆m)]λp+1+
m∑
i=1

i6=p, i 6=p+1

Dp,i(∆m)λi = −Fp(∆m), p = 1,m− 1. (2.21)

Let Q∗(∆m) be the matrix corresponding to the left-hand side of system (2.20), (2.21).
Then system (2.20), (2.21) can be written in the form

Q∗(∆m)λ = −F∗(∆m), λ ∈ Rnm, (2.22)
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where F∗(∆m) =
(
− d+BmFm(∆m), F1(∆m), . . . , Fm−1(∆m)

)
∈ Rnm.

Lemma 1. The following statements hold true for ∆m ∈ σ(k, [0, T ]):

(a) the vector λ∗ = (λ∗1, λ
∗
2, . . . , λ

∗
m) ∈ Rnm, composed of the values of a solution x∗(t) to

problem (2.1),(2.2) at the partition points, λ∗r = x∗(tr−1), r = 1,m, satisfies system (2.22);

(b) if λ̃ = (λ̃1, λ̃2, . . . , λ̃m) ∈ Rnm is a solution to system (2.22) and a function system
ũ[t] = (ũ1(t), ũ2(t), ..., ũm(t)) is a solution to the special Cauchy problem (2.3), (2.4) with
λr = λ̃r, r = 1,m, then the function x̃(t), defined as x̃(t) = λ̃r + ũr(t), t ∈ [tr−1, tr), r = 1,m,
x̃(T ) = λ̃m + lim

t→T−0
ũm(t), is a solution to problem (2.1),(2.2).

The proof of Lemma 1 repeats the proof of Lemma 1 in [24, p. 1155] with minor changes.

We will use the following notation: α = max
t∈[0,T ]

‖A(t)‖,

ω = max
r=1,m

(tr − tr−1), ϕ(k) = max
r=1,m

tr∫
tr−1

k∑
j=1

‖ϕj(t)‖dt, ψ(T ) = max
p=1,k

T∫
0

‖ψp(t)‖dt.

Theorem 1. Let ∆m ∈ σ(k, [0, T ]) and let the matrix Q∗(∆m) : Rnm → Rnm be invertible.
Then problem (2.1), (2.2) has a unique solution x∗(t) for any f(t) ∈ C([0, T ], Rn), d ∈ Rn,
and the following estimate holds:

‖x∗‖1 ≤ N (k,∆m) max(‖d‖, ‖f‖1), (2.23)

where

N (k,∆m) = eαω
{
ϕ(k)

[
‖[I −G(∆m)]−1‖ · ψ(T )

(
eαω − 1 + eαω · ϕ(k) · ψ(T )

)
+ ψ(T )

]
+ 1
}

×γ∗(∆m)(1 + ‖C‖) max
{

1, ωeαω
[
1 + eαω · ϕ(k) · ‖[I −G(∆m)]−1‖ · ψ(T )

}
+eαωω

[
ϕ(k) · ‖[I −G(∆m)]−1‖ · ψ(T ) · eαω + 1

]
. (2.24)

Proof. Take a partition ∆m ∈ σ(k, [0, T ]). Let f(t) ∈ C([0, T ], Rn) and d ∈ Rn. Since the
matrix Q∗(∆m) is invertible, we can find the unique solution to the system of linear algebraic
equations (2.22): λ∗ = −[Q∗(∆m)]−1F∗(∆m).

By solving the special Cauchy problem (2.3), (2.4) with λ = λ∗, we get the function
system u∗[t] = (u∗1(t), u

∗
2(t), . . . , u

∗
m(t)). It follows from the regularity of the ∆m partition

that there exists a unique function system u∗[t] with the elements u∗r(t) that are determined
from the right-hand side of representation (2.15) with λ = λ∗ = (λ∗1, λ

∗
2, . . . , λ

∗
m) ∈ Rnm.

Then, by Lemma 1, the function x∗(t) defined as x∗(t) = λ∗r + u∗r(t), t ∈ [tr−1, tr), r = 1,m,
x∗(T ) = λ∗m + lim

t→T−0
u∗m(t), is a solution to problem (2.1), (2.2). The uniqueness of the

solution can be proved by contradiction.
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Let us verify the validity of the estimate (2.23). Using the equalities

Xr(t)

t∫
tr−1

X−1r (τ)P (τ)dτ =

t∫
tr−1

P (τ1)dτ1 +

t∫
tr−1

A(τ1)

τ1∫
tr−1

P (τ2)dτ2dτ1

+

t∫
tr−1

A(τ1)

τ1∫
tr−1

A(τ2)

τ2∫
tr−1

P (τ3)dτ3dτ2dτ1 + . . . , t ∈ [tr−1, tr],

we get the estimates

‖Xr(tr)

tr∫
tr−1

X−1r (τ)ϕj(τ)dτ‖ ≤ eα(tr−tr−1)

tr∫
tr−1

‖ϕj(t)‖dt, r = 1,m. (2.25)

It follows from (2.12), (2.18), (2.25) that

‖gp(f,∆m)‖ ≤
m∑
r=1

tr∫
tr−1

‖ψp(τ)‖ · ‖Xr(τ)

τ∫
tr−1

X−1r (τ1)f(τ1)dτ1‖dτ

≤
m∑
r=1

tr∫
tr−1

‖ψp(τ)‖dτ · eαω · ω · ‖f‖1 =

T∫
0

‖ψp(t)‖dt · eαω · ω · ‖f‖1, p = 1, k, (2.26)

‖Fr(∆m)‖ ≤ eα(tr−tr−1)
k∑
j=1

tr∫
tr−1

‖ψj(t)‖dt‖[I−G(∆m)]−1‖max
p=1,k

‖gp(f,∆m)‖+eα(tr−tr−1)ωr‖f‖1.

By using ‖F∗(∆m)‖ ≤ (1 + ‖Bm‖) max
(
‖d‖, max

r=1,m
‖Fr(∆m)‖

)
, and taking into account

(2.16), (2.25), and (2.26), we get

‖F∗(∆m)‖ ≤ (1 + ‖Bm‖) max
{

1, ωeαω
[
1

+eαω max
r=1,m

tr∫
tr−1

k∑
j=1

‖ϕj(t)‖dt‖[I −G(∆m)]−1‖max
p=1,k

T∫
0

‖ψp(t)‖dt
]}

max(‖d‖, ‖f‖1). (2.27)

Inequalities (2.22), (2.27) and the invertibility of Q∗(∆m) yield the following estimate:

‖λ∗‖ ≤ ‖[Q∗(∆m)]−1‖‖F∗(∆m)‖ ≤ γ∗(∆m)(1 + ‖Bm‖) max
{

1, ωeαω
[
1
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+eαω max
r=1,m

tr∫
tr−1

k∑
j=1

‖ϕj(t)‖dt‖[I −G(∆m)]−1‖max
p=1,k

T∫
0

‖ψp(t)‖dt
}

max(‖d‖, ‖f‖1). (2.28)

By (2.15) and (2.11), we get

‖u∗[·]‖2 ≤
{
eαω max

r=1,m

tr∫
tr−1

k∑
j=1

‖ϕj(t)‖dt‖[I −G(∆m)]−1‖max
p=1,k

T∫
0

‖ψp(t)‖dt
(
eαω − 1

+eαω max
r=1,m

tr∫
tr−1

max
j=1,k

‖ϕj(t)‖dt max
p=1,k

T∫
0

‖ψp(t)‖dt
)

+ max
p=1,k

T∫
0

‖ψp(t)‖dt
]

+ (eαω − 1)

}
‖λ‖

+eαωω
[

max
r=1,m

∫ tr

tr−1

k∑
j=1

‖ϕj(t)‖dt‖[I −G(∆m)]−1‖max
p=1,k

∫ T

0
‖ψp(t)‖dt · eαω + 1

]
· ‖f‖1. (2.29)

Finally, by using (2.28), (2.29) and ‖x∗‖1 ≤ ‖λ∗‖ + ‖u∗[·]‖2, we arrive at the estimate
(2.23). Theorem 1 is proved.

Definition 3. Problem (2.1), (2.2) is said to be well-posed if for any pair (f(t), d), with
f(t) ∈ C([0, T ], Rn) and d ∈ Rn, it has a unique solution x(t), and the estimate

‖x‖1 ≤ K max(‖f‖1, ‖d‖)

holds, where K is a constant independent of f(t) and of d.

Theorem 2. Problem (2.1), (2.2) is well-posed if and only if the matrix Q∗(∆m) : Rnm →
Rnm is invertible for any partition ∆m ∈ σ(k, [0, T ]).

Proof. For a fixed k and ∆m ∈ σ(k, [0, T ]) the number N (k,∆m), defined by (2.24), does
not depend on f(t) and d. Thus the sufficiency of the conditions of Theorem 2.2 for the
well-posedness of problem (2.1), (2.2) follows from Theorem 1.

Necessity. Let problem (2.1), (2.2) be well-posed and ∆m ∈ σ(k, [0, T ]). Suppose to the
contrary that the matrix Q∗(∆m) : Rnm → Rnm is not invertible. This is possible only if the
homogeneous system of equtions

Q∗(∆N )λ = 0, λ ∈ RnN , (2.30)

has a nonzero solution. Assuming that λ̃ = (λ̃1, λ̃2, . . . , λ̃m) is a nonzero solution (i.e. ‖λ̃‖ 6=
0) to system (2.30), consider the homogeneous problem (2.1), (2.2) with f(t) = 0 and d = 0.
For this problem, system (2.22) coincides with (2.30). Then, by Lemma 2.1, the function x̃(t)
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defined as x̃(t) = λ̃r + ũr(t), t ∈ [tr−1, tr), r = 1,m, x̃(T ) = λ̃m + lim
t→T−0

ũm(t), is a nonzero

solution to the homogeneous problem. Here the function system ũ[t] = (ũ(t), ũ2(t), . . . , ũm(t))
is a solution to the special Cauchy problem (2.3), (2.4) with λ = λ̃ and f(t) = 0. This
contradicts the well-posedness of problem (2.1), (2.2). Theorem 2 is proved.

3 An algorithm for solving multipoint problems for Fredholm integro-
differential equations with degenerate kernel and its numerical implementation

The Cauchy problems for ordinary differential equations on the subintervals

dx

dt
= A(t)x+ P (t), x(tr−1) = 0, t ∈ [tr−1, tr], r = 1,m, (3.1)

are an essential part of the algorithm proposed. Here P (t) is (n× n) matrix or n vector that
is continuous on [tr−1, tr], r = 1,m. Hence, a solution to problem (3.1) is a matrix or a vector
of the dimension n.

Let E∗,r(A(·), P (·), t) denote a solution to the Cauchy problem (3.1). Clearly,

E∗,r(A(·), P (·), t) = Xr(t)

t∫
tr−1

X−1(τ)P (τ)dτ, t ∈ [tr−1, tr], (3.2)

where Xr(t) is a fundamental matrix of differential equation (3.1) on the r-th subinterval.

The choice of a regular partition is another important part of the algorithm. We can start
with ∆1, when the interval [0, T ] is not partitioned.

I. We divide [0, T ] into m parts by the points t0 = 0 < t1 < . . . < tm−1 < tm = T, involved
in the multipoint condition. The resulting partition we denote by ∆m,m = 1, 2, . . . .

II. By solving mk Cauchy problems for ordinary differential matrix equations

dx

dt
= A(t)x+ ϕk(t), x(tr−1) = 0, t ∈ [tr−1, tr], (3.3)

we obtain the matrix functions

E∗,r(A(·), ϕj(·), t), t ∈ [tr−1, tr], r = 1,m, j = 1, k. (3.4)

III. We multiply each (n×n) matrix (3.4) by (n×n) matrix ψp(t), p = 1, k, and integrate
the products over [tr−1, tr] :

ψ̂p,r(ϕj) =

tr∫
tr−1

ψp(t)E∗,r(A(·), ϕj(·), t)dt. (3.5)
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Summing up (3.5) with respect to r and taking into account (2.10), (3.2), we get (n × n)

matrices Gp,j(∆m) =

m∑
r=1

ψ̂p,r(ϕj), p, j = 1, k.

We then construct (nk × nk) matrix G(∆m) = (Gp,j(∆m)), p, j = 1, k, and determine
whether the matrix [I − G(∆m)] : Rnk → Rnk is invertible. If so, we find its inverse and
represent it as [I−G(∆m)]−1 = (Mp,j(∆m)), whereMp,j(∆m)) are (n×n) matrices, p, j = 1, k.
We then move on to the next step of the algorithm.

If [I −G(∆m)] is not invertible, i.e. the ∆m partition is not regular, then we take a new
partition of [0, T ] and start the algorithm again. A simple way to choose a new partition is to
take ∆2m, dividing each subinterval ∆m in half. We add to the points t = ti of the multipoint
condition the points (ti − ti−1)/2, i = 1,m. Then, redesignating all points as θ0 = t0 = 0,
θ1 = (t1− t0)/2, θ2 = t1, θ3 = (t2− t1)/2, θ4 = t2, ..., θ2m−1 = (tm− tm−1)/2, θ2m = tm = T ,
we again get problem (2.1), (2.2) with multipoint conditions at the points t = θi, i = 0, 2m.

IV. Solving again the Cauchy problems for ordinary differential equations

dx

dt
= A(t)x+A(t), x(tr−1) = 0, t ∈ [tr−1, tr],

dx

dt
= A(t)x+ f(t), x(tr−1) = 0, t ∈ [tr−1, tr], r = 1,m,

we obtain E∗,r(A(·), A(·), t) and E∗,r(A(·), f(·), t), r = 1,m.

V. We evaluate the integrals ψ̂p,r =

tr∫
tr−1

ψp(t)dt,

ψ̂p,r(A) =

tr∫
tr−1

ψp(t)E∗,r(A(·), A(·), t)dt, ψ̂p,r(f) =

tr∫
tr−1

ψp(t)E∗,r(A(·), f(·), t)dt.

From (2.11), (2.12) and (3.2) we determine (n× n) matrices

Vp,r(∆m) = ψ̂p,r(A) +
m∑
i=1

m∑
k=1

ψ̂p,i(ϕj) · ψ̂j,r

and n vectors gp(f,∆m) =
m∑
r=1

ψ̂p,r(∆m), p = 1, k, r = 1,m.

VI. We construct the system of linear algebraic equations in parameters

Q∗(∆m)λ = −F∗(∆m), λ ∈ Rnm. (3.6)

The elements of the matrixQ∗(∆m) and the vector F∗(∆m) = (−d+BmFm(∆m), F1(∆m), . . . ,
Fm−1(∆m)) ∈ Rnm are determined by the equalities (2.16), (2.17), (2.18), where, by (3.2),
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we replace Xr(tr)

tr∫
tr−1

X−1r (τ)ϕj(τ)dτ and Xr(tr)

tr∫
tr−1

X−1r (τ)f(τ)dτ with E∗,r(A(·), ϕj(·), tr)

and E∗,r(A(·), f(·), tr), respectively. It follows from Theorem 2 that the invertibility of the
matrix Q∗(∆m) is equivalent to the well-posedness of problem (2.1), (2.2). By solving system
(3.6), we get λ∗ = (λ∗1, λ

∗
2, . . . , λ

∗
m) ∈ Rnm.

VII. From the equalities

µ∗s =

m∑
j=1

( k∑
p=1

Ms,p(∆m)Vp,j(∆m)
)
λ∗j +

k∑
p=1

Ms,p(∆m)gp(f,∆m) (3.7)

we determine the components µ∗ = (µ∗1, µ
∗
2, . . . , µ

∗
k) ∈ Rnk and construct the function

F∗(t) =
k∑
s=1

ϕs(t)
[
µ∗s +

m∑
r=1

tr∫
tr−1

ψs(τ)dτλ∗r

]
+ f(t). (3.8)

Recall that λ∗r = x∗(tr−1), where x∗(t) is a solution to problem (2.1), (2.2). Hence, by solving
system (3.6), we get the values of the desired solution at the left endpoints of the partition
subintervals. In order to determine the values of the function x∗(t) at the remaining points of
the subintervals [tr−1, tr), we solve the following Cauchy problems for the ordinary differential
equation:

dx

dt
= A(t)x+ F∗(t), x(tr−1) = λ∗r , t ∈ [tr−1, tr), r = 1,m.

Thus, the proposed algorithm contains seven interrelated parts.

If the fundamental matrices Xr(t), r = 1,m, are known, then the equalities (2.16), (2.17),
and (2.18) enable us to construct the system (3.6). Let λ∗ = (λ∗1, λ

∗
2, . . . , λ

∗
m) ∈ Rnm be a

solution to (3.6). Then, using (3.7) and (3.8), we construct the function F∗(t) and determine
a solution to problem (2.1), (2.2) by the equalities

x∗(t) = Xr(t)X
−1
r (tr−1)λ

∗
r +Xr(t)

t∫
tr−1

X−1r (τ)F∗(τ)dτ, t ∈ [tr−1, tr), r = 1,m, (3.9)

x∗(T ) = Xm(T )X−1m (tm−1)λ
∗
m +Xm(T )

T∫
tm−1

X−1m (τ)F∗(τ)dτ. (3.10)

So, in this case the proposed algorithm provides the solution to the linear multipoint boundary
value problem for integro-differential equations (2.1), (2.2) in the form (3.9), (3.10). As is
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known, it is not always possible to construct a fundamental matrix for the system of ordinary
differential equations with variable coefficients. For this reason, we propose the following
numerical implementation of the algorithm that is based on the fourth-order Runge-Kutta
method and Simpson’s rule.

I. Let us take a partition ∆m : t0 = 0 < t1 < . . . < tm−1 < tm = T . We divide each rth
subinterval [tr−1, tr], r = 1,m, into mr parts with the step size hr = (tr − tr−1)/mr.

Suppose that on each subinterval [tr−1, tr] a variable t̂ takes on discrete values: t̂ = tr−1,
t̂ = tr−1 + hr, . . . , t̂ = tr−1 + (mr − 1)hr, t̂ = tr. Let {tr−1, tr} denote the set of such points.

II. Using the fourth-order Runge-Kutta method, we obtain numerical solutions to the
Cauchy problems (3.1) and determine the values of (n× n) matrix Ehr∗,r(A(·), ϕj(·), t̂) on the

set {tr−1, tr}, r = 1,m, j = 1, k.

III. Using the values of (n × n) matrices ψj(s) and Ehr∗,r

(
A(·), ϕj(·), t̂

)
on {tr−1, tr} and

applying Simpson’s rule, we determine (n× n) matrices

ψ̂hrp,r(ϕj) =

tr∫
tr−1

ψp(τ)Ehr∗,r(A(·), ϕj(·), τ)dτ, p, j = 1, k, r = 1,m.

Summing up the matrices ϕ̂hrp,r(ψj) with respect to r, we get (n×n) matrices Gh̃p,j(∆m) =
m∑
r=1

ϕ̂hrp,r(ψj), where h̃ = (h1, h2, . . . , hm) ∈ Rn. We then construct (nk×nk) matrixGh̃(∆m) =

(Gh̃p,j(∆m)), p, j = 1, k.

Determine whether the matrix [I − Gh̃(∆m)] : Rnk → Rnk is invertible. If so, we find

[I −Gh̃(∆m)]−1 = (M h̃
p,j(∆m)), p, j = 1, k.

In the case [I − Gh̃(∆m)] is not invertible, we choose a new partition. In particular, as
shown above, each subinterval can be divided in half.

IV. Solving the Cauchy problem (3.5), (3.6) by the fourth-order Runge-Kutta method, we
get the values of (n×n) matrix E∗,r(A(·), A(·), t̂) and n vector E∗,r(A(·), f(·), t̂) on {tr−1, tr},
r = 1,m.

V. By using Simpson’s rule on the grid {tr−1, tr}, we evaluate the definite integrals

ψ̂hrp,r =

tr∫
tr−1

ψp(τ)dτ, ψ̂hrp,r(A) =

tr∫
tr−1

ψp(τ)Ehr∗,r(A(·), A(·), τ)dτ,

ψ̂hrp,r(f) =

tr∫
tr−1

ψp(τ)Ehr∗,r(A(·), f(·), τ)dτ, r = 1, N, p = 1,m.
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We determine (n× n) matrices V h̃
p,r(∆m) and n vectors gh̃p (f,∆m), r = 1,m, p = 1, k, by the

equalities V h̃
p,r(∆m) = ψ̂hrp,r(A) +

m∑
j=1

k∑
i=1

ψ̂
hj
p,j(ϕi) · ψ̂

hr
i,r, gh̃p (f,∆m) =

m∑
r=1

ψ̂hrp,r(f).

VI. We construct the system of linear algebraic equations in parameters

Qh̃∗(∆m)λ = −F h̃∗ (∆m), λ ∈ Rnm. (3.11)

The elements of the matrix Qh̃∗(∆m) and the vector F h̃∗ (∆m) = (−d+BmF
h̃
m(∆m), F h̃1 (∆m),

. . . , F h̃m−1(∆m)) are determined by the equalities

Dh̃
r,i(∆m) =

k∑
j=1

Ehr∗,r(A(·), ϕj(·), tr)
[ k∑
p=1

M h̃
j,p(∆m)V h̃

p,i(∆m) + ψ̂hij,i

]
, i 6= r, r, i = 1,m,

Dh̃
r,r(∆m) =

k∑
j=1

Ehr∗,r(A(·), ϕj(·), tr)
[ k∑
p=1

M h̃
j,p(∆m)V h̃

p,r(∆m) + ψ̂hrj,r

]
+ Ehr∗,r(A(·), A(·), tr),

F h̃r (∆m) =

k∑
j=1

Ehr∗,r(A(·), ϕj(·), tr)
k∑
p=1

M h̃
j,p(∆m)gh̃p (∆m) + Ehr∗,r(A(·), f(·), tr), r = 1,m.

Using the constructed matrix (Qh̃∗(∆m), we can establish the well-posedness of problem (2.1),

(2.2). Suppose the matrix Qh̃∗(∆m) is invertible and the estimate ||Q∗(∆m)−Qh̃∗(∆m)|| ≤ ε(h̃)

holds. If the inequality ||[Qh̃∗(∆m)]−1|| · ε(h̃) < 1 is true, then, by Theorem 4 [9, p.212], the
matrix Q∗(∆m) is invertible. It follows then from Theorem 2.2 that problem (2.1), (2.2) is
well-posed.

By solving (3.11) we determine λh̃ ∈ Rnm. As noted above, the elements λh̃ =

(λh̃1 , λ
h̃
2 , . . . , λ

h̃
m) are the values of the approximate solution to problem (2.1), (2.2) at the

left endpoints of the subintervals: xh̃r(tr−1) = λh̃r , r = 1,m.

VII. In order to calculate the values of the approximate solution at the remaining points
of the set {tr−1, tr}, we first find

µh̃i =

m∑
j=1

( k∑
p=1

M h̃
i,p(∆m)V h̃

p,j(∆m)
)
λhi +

k∑
p=1

M h̃
i,p(∆m)gh̃p (f,∆m), i = 1, k,

and then, using the fourth-order Runge-Kutta method, solve the Cauchy problems

dx

dt
= A(t)x+ F h̃(t), x(tr−1) = λh̃r , t ∈ [tr−1, tr], r = 1,m,

Kazakh Mathematical Journal, 20:1 (2020) 103–124



Novel approach for solving multipoint BVP ... 119

where F h̃(t) =

k∑
i=1

ϕi(t)
(
µh̃i +

m∑
j=1

ψ̂
hj
i,jλ

h
j

)
+ f(t).

Thus the algorithm allows us to find a numerical solution to problem (2.1), (2.2).

4 Multipoint problem for integro-differential equation with non-degenerate
kernel

Let us now turn to the original multipoint problem (1.1), (1.2). To solve the problem, we
will approximate the kernel of the integral summand by a degenerate kernel [6], [8], [24], [25].

By the Weierstrass polynomial approximation theorem, for any ε > 0 there exist a number
k = k(ε) and continuous on [0, T ] matrices ϕj(t), ψj(τ), j = 1, k, such that the following
inequality holds

max
t∈[0,T ]

T∫
0

‖K(t, τ)−
k∑
j=1

ϕj(t)ψj(τ)‖dτ < ε. (4.1)

The set of matrices {ϕj(t), ψj(τ), j = 1,m}, satisfying (4.1), we will call the ε-
approximating set for K(t, τ). The multipoint problem with degenerate kernel (2.1), (2.2),
corresponding to (1.1), (1.2), we will call the ε-approximating problem for problem (1.1),
(1.2).

Assuming the ε-approximating multipoint problem (2.1), (2.2) to be well-posed with
constant Ck, we find the solution to problem (1.1), (1.2) according to the following algorithm.

Step 0. By solving problem (2.1), (2.2), we get a function x(0)(t), which we take as an initial
approximation of the solution to problem (1.1), (1.2).

Step 1. Using x(0)(t) and solving the ε-approximating problem

dx

dt
= A(t)x+

k∑
j=1

ϕj(t)

T∫
0

ψj(τ)x(τ)dτ

+

T∫
0

[
K(t, τ)−

k∑
j=1

ϕj(t)ψj(τ)
]
x(0)(τ)dτ + f(t), t ∈ (0, T ), (4.2)

m∑
i=0

Bix(ti) = d, d ∈ Rn, (4.3)

we get the function x(1)(t).
Continue the algorithm, in the ith step (i = 1, . . .) we solve the problem

dx

dt
= A(t)x+

k∑
j=1

ϕj(t)

T∫
0

ψj(τ)x(τ)dτ
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+

T∫
0

[
K(t, τ)−

k∑
j=1

ϕj(t)ψj(τ)
]
x(i−1)(τ)dτ + f(t), t ∈ (0, T ), (4.4)

m∑
i=0

Bix(ti) = d, (4.5)

and get the function x(i)(t).

The well-posedness of the approximating problem ensures the feasibility of the algorithm
and allows us to construct the sequence (x(i)(t)), i = 0, 1, . . . .

The following assertion provides conditions for the convergence of the algorithm to the
unique solution of multipoint problem (1.1), (1.2) and the estimates for the difference between
the exact and approximate solutions to the problem.

Theorem 3. Let the ε-approximating problem (2.1), (2.2) be well-posed with constant Ck.
Suppose that the following inequality holds:

qεm = Km · ε < 1. (4.6)

Then the algorithm converges to x∗(t) and the estimate

‖x∗ − x(i)‖1 ≤
1

1− qεk
(qεk)

i · Ck max(‖f‖1, ‖d‖) (4.7)

is valid, where x∗(t) and x(i)(t) are the unique solutions to problems (1.1), (1.2) and (4.4),
(4.5), respectively.

Proof. By assumption, there exists a unique solution to problem (2.1), (2.2) and it satisfies
the inequality

‖x(0)‖1 ≤ Ck max(‖f‖1, ‖d‖).

By solving problem (4.2), (4.3), we get x(1)(t). The difference ∆x(1)(t) = x(1)(t) − x(0)(t)
satisfies the inequality

‖∆x(1)‖1 ≤ Ck · max
t∈[0,T ]

T∫
0

‖K(t, s)−
k∑
j=1

ϕj(t)ψj(τ)‖dτ‖x(0)‖1

≤ Ck · ε · Ck ·max(‖f‖1, ‖d‖). (4.8)

In the same way, by solving problem (4.4), (4.5), we get x(i)(t), and for the difference
∆x(i)(t) = x(i)(t)− x(i−1)(t) we have

‖∆x(i)‖1 ≤ Ck · ε · ‖∆x(i−1)‖1 = qεk‖∆x(i−1)‖1, i = 2, 3, . . . . (4.9)
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The convergence of the sequence (x(i)(t)), i = 0, 1, . . . , to the solution x∗(t) of problem (1.1),
(1.2), as well as the uniqueness of this solution, follow from the inequalities (4.6) and (4.9).
The estimate is derived from (4.8) and (4.9). Theorem 3 is proved.

The conditions of Theorem 1 ensure the existence of a unique solution to problem (2.1),
(2.2.) and the validity of the estimate (2.23). The number N (k,∆m) in (2.23), as mentioned
above, does not depend on f(t) and d. We therefore can treat this number as a constant of
well-posedness of problem (2.1), (2.2). Hence, by Theorems 1 and 3, the following statement
holds true.

Theorem 4. Suppose that

(a) the set of the matrices {ϕj(t), ψj(τ), j = 1, k} is an ε-approximating set for K(t, τ);

(b) ∆m ∈ σ(k, [0, T ]);

(c) the matrix Q∗(∆m) : Rnm → Rnm in (2.22) is invertible;

(d) the inequality δεm = N (k,∆m) · ε < 1 holds.

Then problem (1.1), (1.2) is well-posed with constant C =
1

1− δεk
· N (k,∆m).

The conditions of Theorem 3 are not only necessary but also sufficient for the well-
posedness of problem (1.1), (1.2).

Theorem 5. Problem (1.1), (1.2) is well-posed if and only if there exists the ε-approximating
multipoint problem (2.1), (2.2), that is well-posed with constant Ck, and the inequality (4.6)
holds true.

Proof. The sufficiency of the conditions of the theorem for the well-posedness of problem
(1.1), (1.2) follows from Theorem 3.

Let us prove the necessity. Assume that problem (1.1), (1.2) is well-posed with a constant
C. Take ε > 0 satisfying the inequality ε·C < 1/2. For chosen ε take k ∈ N and continuous on
[0, T ] matrices ϕj(t), ψj(τ), j = 1, k, satisfying inequality (4.1). Let us show that multipoint
problem (2.1), (2.2) with these matrices is well-posed and the constant Ck of well-posedness
satisfies inequality (4.4). To this end, we use the following algorithm.

Step 0. By solving problem (1.1), (1.2), we get the function x(0)(t).

Step i. Assuming x(i−1)(t), i = 1, 2, . . . , to be known, we solve the problem

dx

dt
= A(t)x+

T∫
0

K(t, τ)x(τ)dτ + f(t) +

T∫
0

[ k∑
j=1

ϕj(t)ψj(τ)−K(t, τ)
]
x(i−1)(τ)dτ, t ∈ [0, T ],

m∑
i=0

Bix(ti) = d,
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and get the function x(i)(t).

It is easy to check that the algorithm converges to x∗(t) and the estimate

‖x∗‖1 ≤
C

1− C · ε
·max(‖f‖1, ‖d‖), (4.10)

holds, where x∗(t) is the unique solution to problem (2.1), (2.2).

Since, by assumption, C · ε < 1/2, the well-posedness of the ε-approximating problem
(2.1), (2.2) with constant Ck = 2C follows from (4.10). Taking into account the choice of
ε > 0, we get qεk = Ck · ε < 1. Theorem 5 is proved.
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Асанова А.Т., Бакирова Э.А., Утешова Р.Е. ИНТЕГРАЛДЫҚ-ДИФФЕРЕНЦИАЛ-
ДЫҚ ТЕҢДЕУ ҮШIН КӨП НҮКТЕЛI ЕСЕПТI ШЕШУГЕ ЖАҢА ТӘСIЛ

Фредгольм интегралдық-дифференциалдық теңдеулер жүйесi үшiн көпнүктелi есеп
қарастырылады. Өзегi айныған интегралдық-дифференциалдық теңдеулер жүйесi үшiн
көпнүктелi есеп жеке зерттеледi. Параметрлеу әдiсi арқылы өзегi айныған интегралдық-
дифференциалдық теңдеулер жүйесi үшiн көпнүктелi есептiң қисынды шешiлiмдiлiгiнiң
шарттары алынды. Қарастырылып отырған есептiң жуық және сандық шешiмдерiн табу
алгоритмдерi ұсынылды. Фредгольм интегралдық-дифференциалдық теңдеулер жүйесi
үшiн көпнүктелi есептiң қисынды шешiлiмдiлiгiнiң қажеттi және жеткiлiктi шарттары
тағайындалды. Зерттелiп отырған есептiң жуық шешiмдерiн табу алгоритмдерi аппрок-
симациялаушы өзегi айныған интегралдық-дифференциалдық теңдеулер жүйесi үшiн
есептiң шешiмдерi негiзiнде тұрғызылды.

Кiлттiк сөздер. Фредгольм интегралдық-дифференциалдық теңдеуi, көп нүктелi
есеп, параметрлеу әдiсi, алгоритм, шешiлiмдiлiк критерийi.

Асанова А.Т., Бакирова Э.А., Утешова Р.Е. НОВЫЙ ПОХОД К РЕШЕНИЮ МНО-
ГОТОЧЕЧНОЙ ЗАДАЧИ ДЛЯ ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ

Рассматривается многоточечная задача для системы интегро-дифференциальных
уравнений Фредгольма. Отдельно изучается многоточечная задача для системы интегро-
дифференциальных уравнений с вырожденным ядром. Получены условия корректной
разрешимости многоточечной задачи для системы интегро-дифференциальных уравне-
ний с вырожденным ядром методом параметризации. Предложены алгоритмы нахожде-
ния приближенных и численных решений рассматриваемой задачи. Установлены необ-
ходимые и достаточные условия корректной разрешимости многоточечной задачи для
системы интегро-дифференциальных уравнений Фредгольма. Построены алгоритмы на-
хождения приближенных решений исследуемой задачи на основе решений аппроксими-
рующей задачи для системы интегро-дифференциальных уравнений с вырожденным яд-
ром.

Ключевые слова. Интегро-дифференциальное уравнение Фредгольма, многоточечная
задача, метод параметризации, алгоритм, критерий разрешимости.
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