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sixth order differential equations
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Abstract. In this article we investigate the correctness of boundary value problems for the sixth order
quasi-hyperbolic equation in Sobolev space

Lu=—D%u+ Au— \u

n 2 3 . .

(D = %, A= 2:1 % is the Laplace operator, \ is a real parameter). For the given operator L two
1= v

spectral problems are introduced and the uniqueness of these problems is established. The eigenvalues

and eigenfunctions of the first spectral problem are calculated for the sixth order quasi-hyperbolic
equation. In this work we show that the equation Lu = 0 for A < 0 under uniform conditions has a
countable set of nontrivial solutions. Usually, this does not happen when the operator L is an ordinary

hyperbolic operator.

Keywords. Sixth order quasi-hyperbolic equation, boundary value problems, eigenvalues, eigenfunctions,

nontrivial solutions.

1 Introduction and Formulation of the problem

Let © be a limited area of space R™ of variables 1, zs, ..., x, with a smooth compact
boundary T' = 9. Let us consider the following differential operator in the cylindrical area
Q=0x(0,T), S=Tx(0,7), 0<T < +o0,

_%u
e
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Lu = +Au—Au= f(z,t), ©€Q, te(0,T), (1)
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where f(x,t) is a given function.

Boundary value problem I3 ). It is required to find a function u(z,t) which is a solution
to equation (1) in the cylinder @ that satisfies the following conditions:

u(z,t)[s =0, (2)
ou 0%u O
u(fL‘,O):a(x,O):ﬁ(x,O):%(x,O):O, T €, (3)
%(az T)—@(sc T)=0, z€Q (4)
ot o '

Boundary value problem /3 . It is required to find a function u(z,t) which is a solution
to equation (1) in the cylinder @) that satisfies conditions (2), (3) and

Diu(z,t)|i—r = Du(z,t)|i=7 = 0, z € Q. (5)

The study of the solvability of boundary value problems for quasi-hyperbolic equations
began, apparently, with the works of V.N. Vragov [1], [2]. Studies in [3]-[7] are related to
further investigations of operators similar to L. One of the main conditions for correctness in
these studies was the condition that parameter A is non-negative. Investigations of nonlocal
problems with integral conditions for linear parabolic equations, for differential equations of
the odd order, and for some classes of non-stationary equations have been actively carried
out recently in the works of A.I. Kozhanov [4], [6], [7]. In [5], the solvability of problem (2),
(3), () for the fourth order quasi-hyperbolic equations with p = 2 is investigated. In the
work [8] boundary value problems with normal derivatives were studied for elliptic equations
of the (20)-st order with constant real coefficients. For these problems, sufficient conditions
for the Fredholm solvability of the problem are obtained and formulas for the index of this
problem are given. An explicit form of the Green’s function of the Dirichlet problem for
the model-polyharmonic equation Alu = f in a multidimensional sphere was constructed
in [9]. [10], [11] are devoted to investigations of the solvability of various boundary value
problems of the orders 0 < k1 < ko < ... < k; < 2l — 1 for the polyharmonic equation in a
multidimensional ball.

In this paper, we describe calculation of eigenvalues )\7(%) ()\7(7%)) of spectral problems
I5 ) (113 ) for the sixth order quasi-hyperbolic equation and study the solvability of boundary

value problems I3 \ (/13 )) for the cases when A coincides or does not coincide with A (A%)).

2 Supporting statement

We denote by V3 the linear set of functions v(x, t), belonging to the space Ly (@) and having
generalized derivatives with respect to spatial variable up to the second order inclusively

KAZAKH MATHEMATICAL JOURNAL, 20:1 (2020) 6-17



8 Alexandr |. Kozhanov, Bakytbek D. Koshanov, Gulzhazira D. Smatova

belonging to the same space and with respect to the variable ¢ up to the order 6 inclusively,
with the norm

o= ([ [+ 55 ()« () ).

Q 7.7 1
Obviously, the space V3 with this norm is Banach space.

ol
Let v(x) be function from the space W, (2). The following inequality is true:

/vQ(x)dac < co/ivgi(x)dx, (6)
&5 i=1

Q

where constant ¢y defined only by the area € (see, example in [12]).
For the function from the space V3 satisfying condition (3), the following inequality holds:

T
/02(3: to)d 3//vttt z,t)dzdt, to € [0,T], (7)
0

Q

T T
//UQ:Utdxdt<8//vtt:L‘td:cdt (8)
0 Q

Let w;(x) be the eigenfunction of the Dirichlet problem for the Laplace operator corre-
sponding to the eigenvalue p;:

Awj(z) = pjwj(z), wj(z)lr =0.

3 Main results

Theorem 1. Let A > cj,c; = mm{——, —%% , co from (6). Then the homogeneous boundary

value problem I3\ has only zero solutzon in the space V3. On the interval (—oo,cy) there

(1)

exists a countable set of numbers Ay’ such that for A = )\7(711) the homogeneous boundary value
problem I3 ) has a non-trivial solution.

Proof. First, we prove the uniqueness of the solution to the problem I3 . Let A > T. We
consider the equality

T

// —t)Lu - wpdzdt = 0.

0

KAZAKH MATHEMATICAL JOURNAL, 20:1 (2020) 6-17
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Integrating by parts and using conditions (2), (3), we get

T
A-T &
5 /[utztt(x,T)%—Zuii(x,T dx—kg//u?ttdxdt
Q =1 0
1 — r MA-T A r
+5 //uiid:vdt: —(2_)/u2(x,T)d:U— 2//u2d:vdtzl. (9)
=19 0 Q 0 O

When A > 0 it follows from this equality that u(x,t) = 0.
We now consider the case of negative values of \. On the one hand due to expressions
(6) and (7), there is an inequality

T
A T
Il =] — Al )/ :ETdQZ—;\// u?dxdt|
0
T T
WATg 3 2
< —T utttdfcdt + —co Z uy, dwdt. (10)
0 =19 0

On the other hand, due to inequalities (7) and (8) we get

T T
A T) 76
|I| < ‘M T3//U?ttdxdt—|— |2)\| 23 //u?ttdl“dt.
0 0 Q

If ¢ = —%, then by evaluating the right side of (9) by (10), we get

n

AT b )+ 3o (o T

Q =1
5—|A\[(A TT3T A
Ml ‘(2_ ) // tttdmdt—l— — | ‘COZ//U dadt < 0. (11)
0 Q =17

Since inequality |A|cy < 1 holds and we can choose number A close to number 7', the inequality
5—|AMA-T)T3>0

holds for fixed values of A. Then, from (11) it follows that u(z,t) = 0.

KAZAKH MATHEMATICAL JOURNAL, 20:1 (2020) 6-17
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In the case of ¢; = we have

_ 40
- T6»

S [t )+ 30w s

Q =1

T
4 A T T° -
0 — 8JAl( — A / / Wadzdt 1 53 / / W, didt < 0. (12)
Z'=10 Q

Since 40 — |A|T® > 0, then choosing again A close to the T, inequality
40 — 8|I\(A —T)T? — |\|T® > 0

can be achieved. Then, from (12) we also get u(x,t) = 0.

The solution to equation (1) is sought in the form u(z,t) = ¢(t)w;(x). Then the function
©(t) must be a solution to the equation

—Dio(t) + [1j — Ne(t) =0, (13)

satisfying condition
p(0) = ¢'(0) = ¢"(0) = ¢"(0) = ¢'(T') = "(T') = 0. (14)

a) If pj — A > 0, then general solution (13) has the form
y 3 . 3
o(t) = Cret + Cgegcos\gyjt + 0367552'71\;%.75

75t

. 5t 3 3
+Cye it C5e%cos\gfyjt + C’Geésin\g'yjt, (15)

where v; = (p;— A)¢. Taking into account (14), the numbers Cj,j = 1,6, should be a solution
to the algebraic system

KAZAKH MATHEMATICAL JOURNAL, 20:1 (2020) 6-17
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Ci+Cy+Cy+C5 =0,
Ci+ 3Co+ 203 — Cy — 305+ LCs =0,
C1—1Cy+BCs+Cy— 105 — BCs =0,
Ci—Cy—Cy+C5 =0,

E2C) + E(3C — Y38)Cy + BE(2C + 19)Cy

—E20, - BTN 30+ ¥29)Cs + B0~ 19)Cs =0,

E2C, — E(AC + 28)Cy + E(LC - 15)Cy

FE 20, 4+ BTN (=10 +5)Cs — ETL(M2C + 18)Cs = 0,

where

7T

3 3
E=e2,C= cos\gva, S = sin\gva.
The determinant of this system will be equal to

Dcﬁ):g[zE%7—3E2—6EC+40+4C2—GE—%j—sE—2+2E—%ﬂ,

and it can not be zero, therefore, in this case, problem (13), (14) has not non-trivial solutions.

b) If p1j — A < 0, then general solution (13) has a form

5t

3t + Cse™ 2770032

o(t) = C’le\{'“ cos = it

+C’e2733m2

+Cue 2 Pt Sm? + Cscosvy;t + Cgsiny;t, (16)

where v; = (A — ,uj)é. Considering (14), the numbers Cj, j = 1,6, should be a solution to the
algebraic system

KAZAKH MATHEMATICAL JOURNAL, 20:1 (2020) 6-17
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Ci+C3+C5 =0,

B+ 10y —BCy+ L0, + =0,

1O+ B+ 50— 04— G5 =0,

Cy+Cy— Cg =0,

B(2C - 190 + E(AC + L28)Cy — E-1 (L0 + 18)Cs
+EN(30 - ¥39)Cy — 205C5 + (C? — 52)C6 = 0,

E(3C —28)Cy + E(ZC + 5)Cy + BT (30 + 45)C;

FE N (—YEC 4+ 19)Cy + (—C2 + §2)C5 — 2C5C5 = 0,

V3. T . ~T
where E =e2 ¥l C = cos%, S = szn%T.

This system has a nontrivial solution if the determinant

1
D(v;) = —0?%8% = —Zsin2ij =0 (17)

is equal to zero. From (17) we get desired set of eigenvalues
(1) km\©
Ajk = Hjk + T ) k=1,2,.... (18)

Theorem 1 is proved.

Corollary 1. The problem I3 ) does not have real eigenvalues other than the numbers )\ﬁ)
from (18) and the family {)\ﬁ) Gk—1 does not have finite limit points. All eigenvalues of
{)\glk) %=1 are finite multiplicity.

Proof. The fact that the problem I3 5 does not have real eigenvalues other than the numbers

)\ﬁ), follows from the basis of the system of functions

{wj(@)}74

in the space W2().

KAZAKH MATHEMATICAL JOURNAL, 20:1 (2020) 6-17
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Suppose that the family {)\;? }ﬁzl has a finite limit point. Then there is a family (j;, k;)
of pairs of natural numbers such that j; + k; — oo as ¢ — oo and the sequence )\ﬁ) will
be fundamental. Note that the indices j;, cannot be limited together, since in this case
Ajk = Wik + (%”)6, k =1,2,..., which cannot be true for a fundamental sequence.

Further, the indices k; also cannot be limited together, since in this case the sequence
{mj; = wj,y,, b will be limited, which is not that case. Therefore, for the indices j; and k;,
Ji — 00, ki — o0 hold as i — oo. But then \j,;, — —oo, which again does not hold for
a fundamental sequence. From the above, the validity of the second part of consequence
follows. The finite multiplicity of each eigenvalue )\ﬁ) follows from the fact that for fixed
numbers j and k the equality /\g.? = )\( L is only possible for a finite set of indices j; and kj.
Consequence proved.

Note that for the case n = 1 the eigenvalues j1; could be in exact form, and then it is easy

to give constructive conditions for the simplicity of each eigenvalue )\( ) or to provide examples
in which the eigenvalues will have a multiplicity greater than one. In the general case, it is
also easy to give simplicity conditions, but it seems that they will not be constructive.

Corollary 2. The eigenvalues )\ﬁ:) of the problem I3 ) correspond to the eigenfunctions

1 1
uf) (@, 1) = wi(@)e 1),
where function (p( )( t) represented as

(1) ¢
k()= 124 (Ey, — E; 0

t
(3CW(Ex — BV + 5v/3S (B + E-Y) + 6)e 2 W cos K
k k 9

t
—(3V3CH(Ey + EY) — 158p(By — B + 3\/§)e§%fsm'%

+(=3CK(Ex + E; ) + (4+ 5vV'3)Sk(E) — 1) —6)e” V’“tcosfyst
+(3V3CL(Ex + B ') + 15Sk(Ey — E; 1) — 6V/3)e™ 2 %tsmﬂygt

+(6Ck(Ey, + E; ') — 6v/3Sy(E), — B Y +12)cosyit + 128k (Ey — B, )sm’ykt}

ﬂ wk wk
ﬂk,Ck:cos2 Sk—sm , C=Const, k=1,2,.

Now consider the problem Il3. The study of the problem I3 is similar to I3. The
following theorem holds.

KAZAKH MATHEMATICAL JOURNAL, 20:1 (2020) 6-17
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Theorem 2. For A > c1,c] = min{—%, —%}, the homogeneous boundary problem 113 5 has
only zero solution in the space Vi. On the interval (—oo,c1) there does not exist a countable

set of numbers )\53) such that for A = )\%) the homogeneous boundary problem 113\ has only
trivial solution.

The solution to equation (1) is sought in the form u(z,t) = ¢(t)w;(x). Then, the function
©(t) must be a solution to equation (13) that satisfies conditions

(0) = ¢'(0) = ¢"(0) = ¢"(0) = ¢"(T) = ¥""(T) = 0. (19)
a) If pj — A > 0, then the general solution ¢(t) has the form
t 3 ¢ 3
o(t) = Creit + C’gegcos\g’yjt + Cgegsin\gyjt

vit

_ 4t 3 . 3
+Cye it 056_%005\2[’7jt + C’Ge_%sm\gvjt,

where v; = (p; — )\)% Considering (15), C;,j = 1,6, should be a solution to the algebraic
System

Ci+Ce+Cs+C5 =0,
Ci+3Co+LCy — Cy— 305+ LCs =0,
CrL—4Co+ L0y + Oy — 105 — LCs =0,
Ci—Cy—Cy+C5 =0,

E2C) + E(=1C + ¥39)Cy — E(ARC + 19)C;

DO

+E2C, — EY(AC + 905 + ETL(2C — 18)Cs = 0,

E2C) + E(A\C + ¥29)Ch + E(—4C + 19)C;

—E20, 4+ B (—10 4+ ¥29)Cs — ETN(2C 4+ 19)Cs =0,

v;T
where F = eJT, C = cos@’ij, S = sin@’ij. The determinant of this system will be

equal to

3
D(v)) = =5 [2B°C + 3B + 6EC + 10+ 4C% + 65" + 3E ™% 4+ 2B7°C],

KAZAKH MATHEMATICAL JOURNAL, 20:1 (2020) 6-17
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and it can not be zero, therefore, in this case, there are no non-trivial solutions.

b) If uj — X < 0, then the function ¢(t) has the form

Yj t
2

Yj t

75t + Che2 it sin->— 5

v
o(t) = Cre2 it s 1 5 + C3e™ 2 Vitcos -

+Cue 2 Pt gin 1 2 —i— Cscosyjt + Cgsiny;jt,
where ; = (A — ,uj)%. In this case, Cj, j = 1,6, should be a solution to the algebraic system

Ci+C3+C5 =0,

VBOy 10— B0y + 10, + Cs =0,

101+ B0+ 105 - 40s - C5 =0,

Cy+Cy—Cs =0,

~E(3C + $29)C1 + E(YC — §S)Co + B (—3C + %25)Cs
“HBC 4+ 190y + (C2 — §2)C5 +2C5C6 = 0,

—B(LC+ 1801+ B(3C - $8)Cy + BT (0 - 18)Cy

110+ L850y —205Cs + (C2 — 52)C6 = 0,

\

where F = 6§7jT, C = cos%, S = sin’i- 2 . The determinant of this system will be equal
to
3
D(v;) =5 [E? + 8EC® + 6+ 12C* +8E7'C* + E77],

also can not be zero.

In conclusion, the problem I13 ) does not have real eigenvalues )\ﬁ). Theorem 2 is proved.
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Kowanos A.I1., Komanos B.JI., Cmarosa I'.JI. AJITBIHIIIBI PETTI K/TACCUKAJIBIK
EMEC JUOOEPEHIINAIBIK TEHJAEY/IEP YIITH KNCBHIHILI MIETTIK ECEIL-
TEP TYPAJIBI

Byn makasiajia Keseci aJTHIHIIBI PETTi KBa3UTUIIEepOOJIaIblK TeHIEY YIIiH
Lu = —D%u + Au — Mu

merTik ecenrepin CoboJieB KeHiCTirHAer KUChIHIBI IEITIiMILIIN 3epTTeired, MmyHaa Dy =

n

2 . . .

%, A=) 88932 — Jlarutac onepaTopsl, A — HAKTHI TapameTp. Bepinaren L omepaTopsl yIimiH eki
i=1""1

KJIACCUKAJIBIK eMeC CIIEKTPJIK ecell KoWbLIraH. KofblIFaH ecenTep/IiH, MenriMiHiH »KaJFbI3/IbI-
Tol fpJesgenren. Bipinmi ecenTin MeHMIIKTI MOHIEpl MEH MEHINKTI (PYyHKITUSIIAPBIHBIH Oap
eKEeHIIr JoJIeIIeHreH, sIFH OyJI ecenTiH HOJIIIK eMec ImermiMaepi Tabbumrad. Bys »KyMbicTa
Lu = 0 Tenueyi yirin A < 0 6osramia »koHe OipTEKTIIIK MAapPTTapbl OPBIHIAIFAHIA CIIEKTPJIIK
€CeIITIH, HeJIJIeH O3Tellle MIeTiMIePIHiH, SFHI MEHIIIKTI (OyHKINAIaPbIHBIH, CAHAJIBIMIbI XKYii-
ecinig 6ap ekeHmiri kepcerisred. L omepaTopbl K9Iyiiri runepbosiablk orepaTop OoraHIa
MYHJal Karjgai o/ieTTe OpbIH aJIMail/ibl.

Kinrrik cosep. ANTHIHIIBI peTTI KBA3UTUIIEPOOJIAIBIK TEHIEY, IMETTIK eCenTep, MEHITIKTI
MOHJEP, MEHIIKTI (QyHKIHAIAD, HOJIIK eMeC IIeIriMaep.

Koxkanos A.U., Komanos B./1., Cmarosa I'.JI. O KOPPEKTHBIX KPAEBBIX 3AIA-
YAX J1JIS1 HEKJIACCUYECKUX JTUOPEPEHIINMAJIBHBIX YPABHEHUN HIECTO-
o IMMOoPAJIKA

B manHOIT cTaThbe HCCIEAYETCS KOPPEKTHAST PA3PEITUMOCTh KPAEBBIX 3aJ1a4 JIJIsl KBA3UIH-
11epOOIMIECKOr0 YpaBHEHHS IIIeCTOr0 Mopsijika B mpocrpanctse CobosieBa:

Lu = —D%u + Au — Mu

n
(Dy = %, A=) (,;9; 5 — omeparop Jlammaca, A — BemecTBennblii napamerp). Craparcs ase
= 9%;
HeKnaCCquCKHezcnleKTpaanLIe 3aJa4n Ui JaHHOTo orteparopa L. /lokasbiBaeTcs e IMHCTBEH-
HOCTB ITOCTaBJIEHHBIX 3aja4. Jl0Ka3bIBaeTCsl CyIeCTBOBaHNE COOCTBEHHBIX JHCEJ U COOCTBEH-
HBIX (PYHKIUI TOCTaBJIEHHON MepBoii 3aa4un. B pabore OyaeT moka3aHo, 9TO JjisI YPaBHEHUS
Lu =0 upu A < 0 u upy BBIIOJHEHUN OTHOPOIHBLIX YCJIOBHIl CIEKTpaJibHas 3ajada obJiaga-
€T CYETHOI CHCTEeMOIl HeTPUBHUAJIBLHBIX PElIeHuil — cOOCTBEHHBIX QyHKINNA. OOBITHO TaKoe He

UMeeT MeCTO, KOTrja orneparop L ecTh OOBIYHBIN THIIePOOJIMIECKUN OIIEPATOP.

KirroueBnre cioBa. Kasurumnepboandeckne ypaBHEHHS IIIECTOTO TOPsi/iKa, KpaeBble 3a,1a-
qm, cOOCTBEHHbBIE 3HAYEHUsI, COOCTBEHHbIE (DYHKIINY, HETPUBUAIbHBIE PEICHUSI.
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The main goal of the present paper is to obtain results on local existence of mild solution
to the integro-differential diffusion system

( t
? 1. 1 N
ug(x,t) — @Dé“ u(x,t) = 1_‘(1_7)/ (t — s) 7 |v|P~ o(s)ds,
0
(1)
0? 1 /
ve(x,t) — @Déﬁﬁv(m,t) = T3 / (t — 8)70ulT  u(s)ds,
\ 0

for (z,t) € R x (0,T) = Qr, subject to the initial conditions
u(x,0) =ug(z) > 0, v(x,0)=vg(xz) >0, z€R, (2)

where «, 8,7,0 € (0,1), p > 1, ¢ > 1, Dg‘ ; is the left-handed Riemann-Liouville fractional

derivative of order p € (0,1) and I' is the gamma function of Euler.
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Mild solution to integro-differential diffusion system ... 19

Recently, Kirane et al. in [1] concerned the Cauchy problem for the fractional diffusion
equation with a time nonlocal nonlinearity of exponential growth
8
2

u(z,t) = I1-%eY), zeRY, t>0,

Dyju(z,t) + (—A) ot

(3)
u(z,0) = ug(z), =RV,

where N > 1, 0 <a<l1l 0< 8 <2, D0| , 1s the Caputo fractional derivative operator of

order a, Ié‘ . (e") is the Riemann-Liouville fractional integral of order 1 — o for e*.

They proved the existence and uniqueness of the local solution by the Banach contraction
mapping principle. Then, the blowup result of the solution in finite time is established by
the test function method with a judicious choice of the test function.

Later on, Ahmad et al. in [2] considered the following problem

8
2

ug(z,t) + (=A)2u(z,t) = I} %), zeRY, t>0,

oft

(4)
u(z,0) = up(z), =€ RY,

and when the problem (3) is also considered with a nonlinearity of the form Ié| S (ulP ),
it reads
£

ug(z,t) + (A 2u(z,t) = I-(ulP~tu), zeRY, >0,

ot

(5)
u(z,0) = ug(z), =RV,

has been considered by Fino and Kirane in [3].

Also, Fino and Kirane in [4] studied the Cauchy problem for the semi-linear parabolic
system with a nonlinear memory

( t
ug(x, t) — Au(z,t) = /t—s P~ u(s)ds, xRN, t>0,
0
(6)
t
ve(x,t) — Av(x,t) = /t—s )0l Yu(s)ds, xzeRN, t>0,
\ 0

supplemented with the initial conditions

u(x,0) =up (z) > 0, v(x,0)=wvy(z) >0, zecRY, (7)
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20 Meiirkhan B. Borikhanov

where g (2),vo (z) € Co(RY), v, § € (0,1) and T is the Euler gamma function.

In these papers, they proved the existence of a unique local solution and under some
suitable conditions on the initial data, they proved that the solution blows up in a finite time
and studied its time blow-up profile.

In [5], Zhang and Sun investigated the blow-up and the global existence of solutions of
the Cauchy problem for a time fractional nonlinear diffusion equation

Dyju(, t) — Au(z, t) = lulP~tu, xeRN, t>0,

(8)
u(z,0) = ug(z), =€ RN,

where p > 1,0 < o < 1,ug (x) € Co(RY) and D2, is the Caputo fractional derivative operator

ot
of order a.

Definition 1. The left and right Riemann-Liouville fractional integrals I |tf( ) and ItOfo(t)
of order a € R (o > 0), for all f(t) € L1(0,T))(1 < g < 00), we defined as [see p. 69 in [6]]

t

|tf / (s)ds,

0

T
« _ 1 a—
Trf )= ey / (5~ 1) f(s)ds,

Definition 2. If f(t) € C([0,T)), the left-handed and right-handed Riemann-Liouville frac-
tional derivatives D0|tf(t) and Dto“Tf(t) of order a € (0,1) are defined by [see p. 70 in [6]]

and

respectively.

D50 = G100 = fr—ay i | (=T () s
0

and

T

d | . 1 d

Dl () = =511 10) =~y o [ =07 (s
t

for all f(t) €10,T].
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Definition 3. The Mittag-Leffler function is given by [see p. 40 in [6]]
oo k

z
E = —_— 0 C.
o1(2) 2 T(ak+1) * » 0, 2€

Lemma 1 [7]. For every o € (0, 1), the uniform bilateral estimate
1 1

T e = P 0 S T rEa T

holds over RT.
Lemma 2 [8]. The Fourier transform of Dirac delta function 6(x) in R defined by

1

F{5(@):€) = 5 / e (p)dn = 1, £ € R,

R

and the inverse Fourier transform of 6(x) can be written as

§(z) =F {1} = ;T/eixfdf, £eR.

R

The Dirac delta function 6(z), where x € R, in [9]:

5(z) = 400 for x =0,
0 for = #£ 0,

and

Definition 4 (Mild solution). Let ug, vy € Cp(R),T > 0 and p,q > 1.

We say that (u,v) € Co(R;C[0,T]) x Co(R; C[0,T]) is a mild solution of the system
(1)(2), if uw and v satisfy the following integral equations [see [10], Th. 2.5]:

u(z,t) = /G (x —y,)ug (y) dy + //G (x —y,t— T)I&;W(‘U’p_l’l))dydﬂ
0
(9)

t
ola,t) = / G (& — y, t)vo () dy + / / G (v —yt — D) (ul" u)dydr,
0 R
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fort€[0,T),z € R, where

G (z,t) = % / e " Fqn (—E%%) dE
R

is a heat kernel of problem (1)—(2) [10].

Lemma 3. G(z,t) function in (9) has the following estimate:

/G(:c,t)dx <1,t>0. (10)
R

Proof. Accordingly to Lemma 1, we have that

Glat) =5 [ B (-47) g < o | [y (~€) e

R R

1 —ix 24 1 —ix

<o [ € B (<€) [ de < o [ 1ae = 3(a),
R R

where 6(x) is the Dirac delta function.

From Lemma 2 we obtain

/G(a:,t)d:c < /6(m)dac =1, t>0.

R R

Theorem 1 (Local existence). Given ug,vg € Co(R) and p,q > 1. Then, there
exists a mazximal time T > 0 such that the system (1)-(2) has a unique mild solution
(u,v) € Co(R;C[0,T)) x Co(R;C[0,T)). Furthermore, either T = oo or T < oo and
[w(E)]| oo 0,1)) + [0 Lo (R (0,7)) — 00, as t — T

Proof. For arbitrary T' > 0, we define the Banach space

Br = {(u,v) € Co(R; C[0,T)) x Co(R; C[0,T));

(11)
[(w,v)|[By < 2(]| wo [[zeo@) + || vo llLeo(w))}

where || - |lc = || - [|Loo(r) and || - || B, is the norm of By defined by

1(w, 0)l|Br =l w s + | o lli=ll w [ @x0,r)) + I 0 Lo @x(0,))
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and

d(u,v) = D [u(t) = v(®)l|Lo(w) for u,v € Br.

Since Cp(R; C[0,T)) is the Banach space, (Br;d) is a complete metric space.
Next, for every (u,v) € Br, we introduce the map ¥ defined on Br by

U(u,v) = (¥1(u,v), Ua(u,v)),

where
¢
Uy (u,v) = /G(az —y,t)uo (y) dy + //G(a: —y,t— T)Iégy(\v]p*lv)dydﬂ tel0,7),
R 0
and

R/G x —y,t)vo (y) dy

- 16u 1 -
+0//G(x — ) (ult u)dydr, t € [0,T).

R
We will prove the local existence by the Banach fixed point theorem.

o U BT — BT.
If (u,v) € By, using Lemma 3, we obtain

S

19 (u, v)|| 5, < HuoHoo+F(11_7)H/t/(s—r)vyv(f)ugodrds
0 0

L°°(0,T)
t s
+||vol| +1’// s$—1T) 5||u (T)]|4 drds
ri-a/ J o)
1 t t
3||uo||oo+]// s = ) o) B dsdr
INC)) 5 L>(0,T)
t t
Hlvol +1’// 5 — 1) |u(r)||L dsdr
F(1—5) 5 o0 Loo(()’T)

T

< Jluollos + CLT* 7 [[0][§ + lvolloe + C2T*°ful{,
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where

Cy =

1—0)2-0r(1-0s T@B=0)
As (u,v) € Br, we get
1 (u, 0)[| B < [[wo]loo + CLT* [0} + [[v0]loo + CoT?°Jull]

- -1 -5 -1
< Jluolloo + llvolloo +max{CiT*~|lv][7~; CoT*°|Jull{ "} ([Jolly + [lul1)
< (luollso + llvollsc) + 27 (o, vo)([[uo]loe + llvolloc),

where
T (ug, v0) = max{Ch T 727 (JJugloc + [[volloe)? ' CoT? 2297 (J[uglloo + [[v0]loc)? ™'}
If we choose T small enough such that
2T (up, vp) < 1, (12)

we conclude that || (u)|l1 < 2(]|uolloo + ||vo]|oo) and hence ¥(u,v) € By.
e Let U be a contraction map.

For (u,v), (@,v) € By, we have the estimate

19 (u, v) = ¥(a,0)||By

t
Sl o= s
=) ol olr) — P 5(7) s
(1 —7) ’0 L°(0,T)
1 t
e = e e s
ra-9)l/ J (o)
1 t t
- =) ol to(r) — P 5(7) e
(1 —7) ‘0/7/ Lo(0.7)
1 t t
g | [ =D e ) — jal ) odsdr
r(1—5)‘0 / (o)
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= T2 oo — (3P 5+ CoT 2O fultu —
Now, by the same computations as above, we have
1 (u, v) = ¥(@,0)|[p, < YT |[[ofP~ o — [P~ o)),
+ T Jul ™ — |al T |y
< C)OT* (P + ([P~ ) o — ol
+ C(@)CoT?° (u ™y + [|al 1) lu — @y

~. 1 .
< 20(p, 9)T (o, vo)lll(u, v) = (@, 9)|[| < 5ll(u, v) = (@, D),
thanks to the following inequality
[[ulP "t — oP o] < C(p)lu— ol (Juf~t + [P~ (13)

T is chosen such that

max{2C(p, q), 1}T (up,v9) < =. (14)

N =

According to the Banach fixed point theorem, system (1
tion (u,v) € Br.

~—

—(2) admits a unique mild solu-
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Bepixanos M.B.
BENJIOKAJI JEPEKKO3/I MHTEIPAJIIBIK-ANOOEPEHIINAIIBIK JUDDY-
BUAJIBIK TEHAEYJIEP YKYVECIHIH TETIC IIEIIIMI

Byn xymbicta Geiiyiokas OGelChI3BIKTBI JIEPEKKO3/ MHTEIPAJIIbIK-TudhdepeHInaIbK,
nuddy3udanbk Tenaeysaep kyiteci yiiin Korrmu ecebiHiH JIOKAJIIBI Teric Imerrimi 3epTTe/reH.
Bepinren renmeynep :xyiieci @ypbe TypaeHAIpyl apKbLIbI IHeIriin, oHbliH ['pun dyHKIMs-
Cbl KYPBUIFaH YKoHE KacueTTepi keaTipiaren. zKaarbi3 JoKaabl merriMaiy 6ap ekenairi Ba-
HaXTBIH JKBURKBIMAHTHEIH HYKTe TYyPaJbl TeOpeMAachl HET131He ApIesIeHe/I].

Kinrrik  ceznep. Jlokammer 1rermiMHIiH 06ap  OOJIybI, Teric IeniiM, WHTErPaJIIbIK-
nmuddepennmnaaabk 1uddy3UAIbIK, TEHIEYIep XKYec.

Bopuxanos M.B.
INIAJIKOE PEHIEHNE CUCTEMBI UHTEI'PO- ANOOEPEHIIAJIBHBIX IODY-
3MOHHBIX YPABHEHUN C HEJIOKAJIbHBIM NCTOYHUKOM

B aToit pabore usy1eno joKaabHOE TIIAJIKOE perenre 3aaadu KoImm s CucTeMbl UHTEI'PO-
nuddepeniuanbubiX 1uddY3MOHHBIX YPABHEHUN ¢ HEJTOKATHHBIM HEJIMHERHBIM UCTOUHUKOM.
C nomornbio nipeobpazoBannst Pyphe pereHa 3a[aHHas CUCTEMa, YPABHEHU, IOCTPOeHa, (DYHK-
st ['puna u mpuBenenst ee cBoiicTBa. COOTBETCTBEHHO JOKA3aHO CYIECTBOBAHNE €IMHCTBEH-
HOT'O JIOKAJILHOT'O PEIIeHNs Ha OCHOBE TeOPEeMbI Danaxa 0 HelOIBUKHOM TOUKE.

Kirouesbre ciopa. CymiecTBOBaHUE JIOKATBLHOTO PEIIEHUs, TJIAJKOE DPEIeHue, CHCTEMA
“HTErpo-anddepeHnnaababX 1uM@y3NOHHBIX YPABHEHNN.
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Abstract. The existence of the solution of two-phase spherical Stefan problem with temperature de-
pendence thermal coefficients is considered. Using the similarity principle this problem is reduced to a
nonlinear ordinary differential equation, and then to a nonlinear integral equation of the Volterra type.
It is proved that the obtained operator is an abstraction type, therefore the integral equation can be

solved by the iteration method.

Keywords. Stefan problem, similarity solution, nonlinear ordinary differential equation, thermal coeffi-

cients, nonlinear integral equation.

1 Introduction

In the Stefan problem with nonlinear thermal coefficients, it is important to give attention
to the temperature dependence of the specific heat and thermal conductivity to determine the
heat process between the melting and boiling isotherms [1]. One-dimensional Stefan problem
with a thermal coefficient at a fixed face is considered in papers [2]-[4].

The process of a closure of electrical contacts is accompanied by an explosion of a micro-
asperity at the attaching point, ignition of an electrical arc and the formation of three zones,
metallic vapor zone, liquid and solid zones, which start to move simultaneously. The tem-
perature fields in all can be described by the heat equations. For the vapor zone we have

o1y 10

0T
Cl(Tl)'Yl(Tl)ﬁ =39 [M(Tl)r21

87"]’ 0<r<at), t>0, (1)
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for the liquid zone

oT: 10 oT:
(T 2 = L0 [&(g)rzaj], alt) <r < B(t), >0, )
and for the solid zone
oT: 1 0 oT:
T ) = o @ G2 s <r <o, e 3

At the initial time the vapor and liquid zones collapse into a point

and initial conditions for the temperatures are
T1(0,0) = Ta(r,0) = T5(r,0) = Ty = const (4)

and the arc heat source with the temperature of metallic vapor ionization T; placed at the
point 7 = 0 is
T1(0,t) =T;. (5)

Finally, the Stefan conditions should be written on the surfaces of the phase transformations:

Ti(a(t),t) = To(a(t), t) = Ty, (6)
—M(ﬂ)W = —A2(Tb)aTz(;W + Lym (Tb)%a (7)
Ta(B(t),t) = T3(B(t),t) = T, (8)
_/\Q(Tm)aTZ(g:M = _A3(Tm)wgfw + Lm'Y2(Tm)%7 (9)

where T (7, t) is temperature of vapor zone, Ts(r, t) is temperature of liquid zone and T5(r, t)
is temperature of solid zone. ¢;(T%),~;(T%) and \;(T%) are material’s density, specific heat
and thermal conductivity. Ty, 7, are boiling and melting temperature, «(t),3(t) are free
boundaries.

If the value of the heat flux entering into the solid zone from the liquid zone is small in
comparison with the value of the heat flux consumed for the phase transformation of the
solid into the liquid, then the conditions (8)—(9) transform into the one-phase conditions

T,(8(0)0) = T (10
(@) OO g ) % (1)
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Two-phase spherical Stefan problem ... 29

while the temperature of the solid zone remains the same value Ty like at the initial time,
and equation (3) should be omitted.

Thus, the final version of the problem includes equations (1)-(2), (4)—(7), (10)—(11). It
should be noted that the problem is a classical Stefan problem without fitting conditions (4)
and (5) which was introduced and considered by Stefan, Lame and Clapeyron.

2 Similarity solution of the problem

To solve problem (1)—(11) we use the substitution 0(r,t) = W and get the
following problem ’ "
06 10 06
aBm) 5 = 55 [)\1(91)7“28;], 0<r<a(t), t>0, (12)
00 10 00
cQ(Qg)fyg(Gg)a—tZ = 25, [)\2(92)7’28;], alt) <r<pt), t>0, (13)
92(07 0) = 02(T7 0) = 6y = const, Oé(O) = ﬂ(O) =0, (14)
01(0,t) = 6; (15)
01(a(t),t) = O2(alt), t) =1, (16)
oy Ba(t),t) ) Ba(a(t), ) dov
M—p = = —de o —— + Lm (17)
0:(3(t), 1) = 0, (18)
(80 t) as
A2 or - Lm’Ym dt* (19)

Now we focus on to obtain similarity solution to problem (12)-(19). If we take by similarity
principle as following form

r
n= 2a0\/£7

and free boundaries are considered in the form «(t) = agy/t and 5(t) = Bov/t, then we obtain
the following free boundary problem with non-linear ordinary differential equations

91'(7", t) = ui(n)v =12, (20)

1
[L(u)n*uy] +203n° N (ur)uf =0, 0<n< 2 (21)
1
L (u)rs) + 2030 N (ughty =0, + << 20 (22)
2 QCMO
ul(O) = Uy, (23)

KAZAKH MATHEMATICAL JOURNAL, 20:1 (2020) 27-37



30 Stanislav N. Kharin, Targyn A. Nauryz

u1(1/2) = up(1/2) = 1, (24)
—Aldulg/z) = —Aadugg/m + L Ym g, (25)
u2(Bo/2a0) =0, (26)

where L(uz) = )\l((Tb —Tm)uz —l—Tm), N(uz) = Cz((Tb —Tm)ul +Tm)71((Tb —Tm)ul —|—Tm), 1=
1,2. To solve the non-linear ordinary differential equation [L[u;]n*u}]’ + 20dn® N (wi)u =
0,7 = 1,2, we use substitution

L(ui)n*ui = vi(n) (28)
and we have the following equation
vi(n) + P(n,ui)vi(n) =0, (29)
202nN (u;
where P(n,u;) = w. By solving equation (29) for i = 1,2, we have the solutions
[ NGn(m)
ui(n
() =) exp  ~203 [ ), (30)
L(u
/" L)
[ N(usn)
uz(n
vo(n) = v2(1/2) exp ( - 204% / nL(uj(n))dn) (31)
1/2

By making substitution (30) and (31) to (28) and using the conditions (23)-(24) and (26),
we have the following solutions

ui(n) =1—®9[1/2,L(1),N(1)] + ®1[n, L(u1), N (u1)], (32)
where ®1[1/2, L(1), N(1)] =1 — u; and

@2[77, L(UQ), N(’U,Q)

—~
w
w

~~

uz(n) =1— ®5[By /2010, L(0), N(0)]’
where n
®1[n, L(u), N(u1)] = v1(0) UngZ’lz(L;] )d'U7
0
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o[, L(uz), N(uz)] = va(1/2) %

1/2

Er[n,w] = exp < - 20‘3] ”]LV((SE; d")’
0

E[n, us] = exp ( - 20‘31//: nffﬁfj)) dn) '

Equations (32) and (33) satisfy problem (21)—(27). From Stefan’s condition (25) and (27) we
obtain

dv,

41y(1/2)E5[1/2,1]
SR = g, 05/200, L0). N O]
oo (1/2)E2[Bo/ 200, 0]
®3[B0/200, L(0), N(0)]
The coefficients of free boundaries «(t) and 3(t) can be found from the expressions (34)—(35).
In the next section, we will prove the existence of similarity solutions (32) and (33).

+ Lb’Yba27 (34)

= L YmfBs. (35)

3 Existence of similarity solutions of the problem

To prove the existence of solutions to of the non-linear integral equations (32) and (33)
we use the fixed point theorem. We suppose that there exist constants L,,, Las, N, and Ny
which satisfy the inequalities

Ly < L(T) < Ly and Ny, < N(T) < Ny (36)

We consider that thermal conductivity and specific heat are Lipchitz functions and satisfy
the following inequality

h(f) = h(g)] < hlIf — gl (37)

by contraction mapping to ordinary differential equation. Let denote ®[n, uw;] = ®[n, L(u;),
N(w;)], i = 1,2, for convenient proving. Before proving the existence of a unique solution of
similarity solutions (32)—(33) we must consider the following lemmas.

Lemma 1. If for any positive n (36) and (37) hold, then the following inequalities

2N 2N
1. exp(— aOL M772> < Ei[n,u1] SeXp<— az m772)a
m M

2 2
afN 1 af N, 1
2. eXp(—OLM<772—4>) < Esn, us] Sexp<— EMm (772—4»
m
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hold for n > 0.

Proof. For the second inequality we have the following prove

n
N alN, 1
Es[n,uz] < exp < - QQ%ﬁ 8d8> = exp < - EMm (772 — 4>>
1/2

The first inequality can be proved similarly.

Lemma 2. If (36)—(37) hold, then

1
1. f0r0<77<§ we have

1(0)VT L f(nﬁao)ﬁq)l[naul] OVl f(” Nmao)

2a0LM\/7 - 2a0Lm\/7m Ly
2. for;<77<2ﬁ630 we have
05 (22t (1) o (/)
i (L) e () s
S () (375 (235
e (95 e ()}

Proof. By using Lemma 1 let us try to prove the second inequality

2
( > ogNm (9 1
277,U2 = L 2 p(_ LM<’U —4)>d’0

1/2

n exp ( - a%va2>
V2(1/2) exp <C¥%Nm) / LM d?}
L v2 '
" 1/2

I N,
After making substitution ¢ = qgv L—m and solving this integral, we finished proving the
M

second inequality. The one is proved analogously.
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Lemma 3. If inequalities (36)—(37) hold, then
* 0 1
1. for all uy,uy € C*|0, 3 we have

a2 _ NyL
|E1[’)’],U1] _El[nauﬂ’ S Lonz(N+ ‘L )HU’T _ulH
m

1
2. for all ug,ul € C° [2 250 } we have

. ad N\ (- NuL\, .

Balna] = Bafnouil] < 72 (o7 = ) (8 + 25 Y g wall.
m

Proof. For the second inequality we have

exp ( ~ QngS]z((ZS)) ds> —exp ( - 2a3/ns]z((3§))

1 1
2 2

| Ea[n, ua] — Ea[n, us]| <

by using | exp(—z) — exp(—y)| < [z — y| we get
7 N (u3)
/ / uf ds
L(u2) /
2
2 Ny L 1 Ny L
_Lm<N+>||u2—uz|r/sds— ( 4><N+Lm>|\uz—u2||

The first inequality is proved analogously as the second.

|E2[77,U2] E2[77,’U,2

U
N N(u}
< 204(2)/’L(Z22) _ Nw)) sds

L(us)

Lemma 4. If (36)-(37) hold, then

1 1
1. for all uy,u} € C° {0, 2] and 0 < n < 5 we get |®1[n, u1] — P2[n, ui]] < oo as integral
defined for ®1[n,u1] is divergent at n =0,

L Bo 1 Bo
Il 0 d = — t
2. fora u2,u260[22 }(m 2<77<2a0wege

1

2 Ny L 1 - 1
P R p———a N ——1)+L(2--)].
2l 2]~ @, 5] < 7y i~ uQH{ ( +Lm)(n+4n >+( n)]
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Proof. By using Lemma 2 and Lemma 3 for the second inequality, we obtain

|D2[n, u2] = Pa[n, wp]| < Ti(n) + Ta(n),

where
| =<
2 | Ealn, ua] — Ean, us]|
T < d
< L2 - .
3
1 1
V2<> a% = mTg2_
2 S AT
:<N+M>||u2—u2|/ s
m m
1
2
7/2 - ao =
2 _ Ny L 1
- N 5 |
S (4 2 Y = wall (4 1)
and

1 1

L(uz)  L(uy)
52

. <1>‘ [ 1L(3) — Liws)]

Th(n) < s2|L(ug)L(u3)|

"
1
=(3)|/

1
2
1)\ |= 1\ |-
VL n — ||L
(2) s sl [ 5 ) s —usfl (2
= ||ul —u — =l —u —-— .
2 ) 52 L2 2 n
3

L7,

By making summation, we can prove the second inequality. The one has an analogous proof.
Now we try to prove the theorem on the existence of a unique solution to the integral equation

(26).

Theorem 1. Let ng be a given positive real number and suppose that (36)—(37) hold. If no
satisfies the following inequality

a2 N,
2L§/{,2\/Nmexp 0= m 1(no)
4L

o(no) := 2
afN
LNy exp | =2 M [112(n0)]?
2L,
_ NuyL 1 - 1
* 2 M
X||lus — us|||ag| N + —— +——-1)4+L{2—— )| <1, 38
e QH[ O< Ly, ><770 4no > ( 770>} (38)
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where

oy [Npy apnoV Nm> VvV Ln < OéonoNM>
= £ —4 [mey f _
/11(1’]0) \/77'61“ < 9 ) \/EGI‘ ( - N exp

2\/LM a%Nm
+ exp ,
Oéo\/Nm 4LM
N VN, /L 2p2 N\
p2(no) = ferf( M)—ﬁerf <a0770 M>— m exp<—aon0 m>
Lo L aonov Nu Lm
2\/ B a%NM
040\/ 4Lm ’

1
then there exists a unique solution uy € C° [2, 770} to the integral equation (33).

1
Proof. We have the operator W : CO[ 770] — " {2, 770} which can be defined as

®a[n, L(uz)]
®a[no, L(uz)]

The solution to equation (33) is a fixed point of the operator W, that is

W (uz(n) =1 -

W(wa(n)) = ualn), 5 <1<

1
We suppose that ug, ul € C° {2, 770} , then by using Lemmas 2-4, we get

W (u2) = W (ua)|| = e (W (uz(n)) = W (us ()]

< ax [(®2[n, u3]P2[no, ua] — Palno, us]P2[n, ua])/(P2[no, uz2]P2[no, u3])|
0
< A max | Pa[n, us|Pa[no, ug] — Pa[no, us]Paln, usl|
776[07770}

< A max (|®2[n, us]|[P2[no, ua] — P2[no, us)|
n€[0,mo]

+[Pafno, u]l|Pa[n, uz] — P2, ugl|),

where )
L5, L,
A= M oy > 0.
LV M
(a1/2) 3N exp (ST o)
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Finally, from Lemmas 3, 4 we have that
(W (u2) = W(uz)| < o(no)lluz — uzl]-

We can see that W is a contraction operator and if the inequality (38) holds, then there
exists a unique solution for integral equation (33). The existence of a unique solution to the
integral equation (32) can also be proved similarly to Theorem 1.
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Xapuu C.H., Haypeiz T.A. ChISBIKTBIK EMEC 2KBIJTY OTKI3I'NIITIT'T BAP EKI
DA3BAJIBIK COEPAJIBIK CTE®AH ECEBI

Byn makanamga remmepaTrypara Toyesi KoLty KoddduimenTrepi 6ap exi daszasbik cdepa-
JbIK Credan ecebiHiH yKCACTBIK, MIEITiMi 6ap eKeH/Iir gosiesaeHreH. Ecel ChI3bIKTHIK, eMeC YKo
nmuddepeHnuaIbK TeHIEY YIITiH ePKiH ITeKapaJsblK, ecelke KeJaTipiireH, cogan keifin Bob-
Teppa TEKTEeC CHI3BIKTHIK, €MeC MHTErPaJIIbIK TEHJeyl aJbIHAIbI. ¥ KCACTHIK, IPUHIAI OaIKy
MeH KaifHay M30TepMaJiaphbl apachIHIAFBI IeKapagapbl epKiH O0aThIH CYHBIK KOHE KATTHI
afiMaKTBIH TeMIEPATYPAChIH MOJIEJIEY YIITiH KOJJIaHbLIFaH.

Kinrrix cezaep. Credan ecebdi, YKCACTBIK, IIEIIIMi, ChISBIKTBIK eMec Koil quddepenmali-
JIBIK, TEHJIEY, XKBLTY KO PUITUEHTTEP], ChI3BIKTHIK eMeC HHTETPAJIIBIK, TEHJIEY.

Xapuu C.H., Haypeiz T.A. JIBYX®PABHAA COEPUYECKAS 3AJTAYA CTED®AHA C
HEJIMHENHOI TEILJIOIIPOBOJHOCTBIO

B nmanmoit pabore jgoKa3aHo CyIIeCTBOBAHUE PEIleHus mog0ous aByxdasnoii cpepuiaeckoit
zajiaan CredaHa ¢ TeMIEPATyPHBIMU 3aBHCHMOCTSIMU TEILJIOBBIX KO3(MMUIIMEHTOB. 3ajatia
CBOJINTCS K 3aj1ade CO CBOOOIHON TI'DAHUIEH HEJTMHEHHOTO OOBIKHOBEHHOIO mudpepeHInaib-
HOI'O YpaBHEHUs, 3aTeM II0JIydaeTcsl HeJnHeliHoe HHTerpaJbHoe ypaBHeHue Tuia Bobreppa.
[MpuaIMT 110106MsT UCIOIB3YETCS JJIsT MOJIETUPOBAHUST TEMIIEPATYPBI YKUJIKOW U TBEPIIO 30H
€O CBOOOIHBIMU I'PAHUIIAMUI MEXKIY U30TepMaMU ILJIABIECHUS U KAIEHHUS.

Kurouesnre cioBa. 3amada Credana, perienne 1mogoous, HeJTMHeHOe 0OBIKHOBEHHOE -
depeHIInaIbHOE ypaBHEHNE, TEILIOBbIEe KOI(MMUINEHTHI, HEJIMHEIHOe WHTErpajJbHOEe ypaBHe-
Hue.
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Abstract. The multispecies supersonic airflow in a planar channel with transverse hydrogen jet injection
is simulated. The Favre averaged Navier-Stokes equations coupled with & — w turbulence model are
solved using a third order ENO scheme. The main attention is paid to the influence of the flow Mach
number to the interaction of the shock wave structure with boundary layers on the upper and the lower
channel walls under the conditions of an internal turbulent flow. In particular, a detailed study of the
shock wave structure, separation zones, jet penetration are investigated at the various Mach number. It
is established that the shock wave structures appearing on the upper and the lower walls and the vortex
zones resulting from the interaction of the shock wave structures with the boundary layers (SWBLI)
decrease due to an increase of the Mach number. For small values of the flow Mach number, an
additional interaction of the shock waves structures on the bottom wall behind the jet is revealed. Also
the decrease of the jet penetration with increasing Mach number is revealed and the dependencies are

obtained. The comparison with an experimental data is implemented.

Keywords. Navier-Stokes equations, supersonic flow shock wave, boundary layer, flow separation, Mach

number.

1 Introduction

The fuel-air mixing and combustion in the scramjet combustor are implemented with
supersonic speed. The jet injection in a cross-flow (JICF) leads to the formation of system
shock wave structures, where a shock wave boundary layer interaction (SWBLI) near walls of
the combustion chamber is the most complex. Such flow with injected jet has been extensively
studied as experimentally [1]-[6] and theoretically [7]-[13].
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Funding: This work was supported in part by the Ministry of Education and Science of Republic of
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There are a few investigations studied the influence of the effect SWBLI to the mixing
of the fuel and the airflow and the combustion as a result [14], [15]. The formed bow shock
wave (resulting from the jet and flow interaction) reaches the upper boundary layer and
causes separation of the boundary layer. Thus, formed SWBLI phenomenon on the top wall
can significantly influence on the structure of the flowfield and, as a consequence, to the
processes of mixing the jet and the flow. It should be noted that in the most of experimental
[16]-[18] and theoretical [19]-[25] works, SWBLI process is studied on the basis of interaction
of the boundary layer of a flat plate with the incident shock wave, generated by the wedge
(shock generator), i.e. the case of SWBLI during the JICF is almost not considered.

During the numerical solving some research [26]-[27] observed the flow unsteadiness
caused the intrinsic flow instabilities in flowfield which is Richtmyer-Meshkov instability in
shock-wave/shear-layer interactions. While the mixing of the airflow with the fuel and the
combustion of the mixture occurs at supersonic speeds. This is the stringent condition for the
time of the oxidant-fuel mixing and the combustion in the channel. Thus, the Mach number
is one of the important flow parameters, since in the chambers the combustion process is very
dependent on the flow speed. The analysis of the researches performed the numerical simu-
lation of supersonic multispecies gas flows shows that the detailed study of the dependence

Separation zong
on the upper wall

A=structure
H: |
Separation zone \
ahead of the jety |

Mach disk

/ Separation zone
_/ behind the jet

i
4 /
e e Weak shock

MyPyly

Expansion wWaves

- -

-
L J

Figure 1 — Scheme of the flow
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of the flow structures on the parameters is needed. The purpose of the present work is the
numerical simulation of a planar supersonic turbulent airflow in a channel with a transverse
injection of the hydrogen jet. The study of the interaction of a shock — wave with boundary
layers (SWBLI) on the bottom and upper walls as well as the conditions of the boundary
layer separations and their influence to the mixture of airflow and hydrogen for a broad range
of the Mach number is performed. The scheme of the flow is shown in Figure 1.

2 Problem statement

Basic equations for the stated problem are the system of two-dimensional Favre averaged
Navier-Stokes equations for multispecies gaseous mixture in Cartesian coordinate system in

conservative form as:
oo 0(E-B) (F-F)

T T (1)

where the vectors of dependent variables and vector fluxes are defined in the form

ﬁ = (p7 pu, pW, Eta ka’ Plﬁ pw)Ta

=3 T
E = (pu, pu® + p, puw, (E; + p) u, puYy, puk, puw)

—

T
F = (pw, puw, pw* + p, (B + p) w, pwYy, pwk, puw) ",

—

1 ok 1 dw\"
E, = <0aTxxaszau7-mx+W7-mz _q:v,Jkaca Re (M""O'kut)a ' Re (,U"i' w,ut) > s

—

e

1 ok 1 Ow
F, = (0, Trzy Tazy UWTaz + WTaz — @z, Jpzy —5— Re (,UJ + k;ut) 92’ Re ( + Uw,uft) 02 >
Viscous stress tensor components are given as

24
3Re

2p

Tyx = 3Re (3ux wz)a Tzz =

(3wz - Ux)a Taz = Tzx = %(uz + wx)

The heat flux is defined in a form

B 1 oT B 7 oT 1
Qe = <P7“Re> ™ + MOQO ;hkzjkxa qz = (ﬁ) 9 + — YoM kzlthkz

The diffusion flux is determined as

) (O A
ke = M T T ScRe 0z

ScRe Ox’
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The pressure and the total energy are given as

-1

pT i i
P=—" W= — 1 Y wn=1
%oMgoW ; Wk ;
o — iYkhk—P+1p(u2+w2)
! ’YooMc%o =1 2 .

The specific enthalpy and the specific heat at a constant pressure of the k" species are
T
hi, = hj, + /cpde, ol = Cpie/ Wi,
To
where the molar specific heat is written in the polynomial form as

5
Cor = Y a7,
i=1

where the coefficients  @j;, are taken from the table JANAF [28] at a normal pressure
(p =1 atm) and temperature T° = 293 K.
The vector of additional terms is as follows:

g = (07 0,0,0, (Pk - B*M"Jk) ) (W*pPk/Mt - ﬁPWQ))T7

8 .
Pk = 7—ijﬂv /Lv] = 1727
L
o) = 0.5, 0 = 0.5, §* = 0.09, 8 =0.075, 4* = 5/9,

k, w are the turbulent kinetic energy and its dissipation rate, Py is the term defining the tur-
bulence generation, the turbulent viscosity is determined by p; = %k [29] and p; is determined
by the Sutherlend formula.

The system of equations (1) is written in non — dimensional form. The input parameters
of airflow o, Poo, Io, Weo are taken as reference parameters, the pressure and the total
energy are normalized by psou?,, for the specific enthalpy hy are R°T., /W, for the molar
specific heats Cpy, are R, and the slot width is chosen as the reference length scale. In the
mass fraction Y3 & = 1 corresponds to Oy, k=2 — Hy, k=3 — Ny. W} is the molecular
weight of a component; Re, Pr,Sc, M are Reynolds, Prandtl, Schmidt and Mach numbers
respectively.
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3 The initial and boundary conditions

At the entrance, the parameters of flow are taken as

Yoo RO Too

P =Po, T =Tuo, u= Moo\ =75
o

sy W=0, Y =Yoo, W=Wge, 2=0,0<2<H,
where the boundary layer is specified near the walls in which longitudinal velocity component
is determined as )

Cfooa ($> +0.9(g) L 2=0,0<2<0b,

U= 1/7
(%) s $:0,52§Z§51,

here &, = 0.37z(Reyz) "2 is the boundary layer thickness [30] and d, = 0.26; is the viscous
sublayer thickness [31].
The profile of temperature and density are taken as [32]

1

T:Tw+u(1—Tw>, p:T’

where Ty = (1 + T@Mgo) is the temperature on the wall and r = 0.88.
On the bottom and top walls:

T P Y;
u=w =0, 8—:0, a—:O, Q:O, 0<x<L, z=0and z=H.
0z 0z 0z
In the slot:
YoRoTo

W =Wy, P=nP, T =Ty, w= My ,u=0,Y =Yy, 2=0, L, <x < Ly+d,

Wo
where Ly is the distance from the entrance to the slot, d is the width of slot, n = Py/Px is
the pressure ratio, My and M, are the Mach numbers of the jet and the flow respectively,
0, 00 refers to the jet and flow parameters; H,, H, is the length and the height of domain.
The initial conditions are taken the same as the boundary conditions at the entrance. The
non-reflection boundary conditions are specified at the outlet boundary [33].

4 Solution method

The methodology of the numerical solving the system (1) is described in [7], [8]. Nu-
merical solution of the system (1) is performed in two stages. A coordinate transformation
is preliminarily done, where a grid thickening is made in the region of high gradients. At
first stage the thermodynamic parameters p, u,w, F; are defined.The third order Essentially
Nonoscillatory Scheme are applied for approximation inviscid terms [34]-[36]. The central
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differences of the second order of accuracy have been used for the approximation of the sec-
ond derivatives. The obtaining system of equations is solved using the matrix sweep method
for the vector of the thermodynamic parameters. The equations of the mass fractions Yj
are similarly solved at the second stage. The temperature field is calculated from the known
values of the variables U using of the Newton-Raphson iterative method with the quadratic
rate of convergence [37].

5 Analysis of results

The validation of numerical model is performed by comparison between the experimental
data [2] and the numerical solution of a supersonic airflow with transverse jet injection of
nitrogen. The next parameters of the supersonic airflow are given: M, = 3.5, Py =
3145 Pa, Ty = 309K, Yo 0, = 0.2, Yo n, = 0.8. The nitrogen sonic jet is injected with
parameters: My = 1,7y = 292K, Yy n, = 1, L, = 228.6 mm through a slot of width
d = 0.2667 mm on the bottom wall. The pressure distribution on the wall in the jet region
is defined with the pressure ratios n = 8.74 and n = 17.12. Figure 2 shows the result of
comparison with experiment for the pressure distribution on the wall near the jet. Here the
"curve” is a numerical result and "I’ are an experimental data [2]. As it is seen from
Figure 2 the good agreement is obtained for the pressure distribution parameter.

5 4
P/Pinﬂo\'\ p/p inflow
4
3_
3
2,
2,
1m [ = -y
H' m n ’fﬁ‘l—\
-" ="
%7 0’8 019 I 11 12 X 13 855 0.9 0.95 i 1.05 T X 115
a) b)

Figure 2 — The pressure distribution on the wall in the region
of jet for pressure ratio n = 8.74 (a) and n = 17.12 (b)

The stated problem of a planar supersonic flow in channel with transverse sound jet
injection of hydrogen from the bottom wall is numerically simulated for studying the influence
of the flow Mach number on the interaction of the shock wave system and the boundary layers
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near walls. The dimensionless parameters in this case are: H, = 90 is the channel length,
H, = 30 is the height and the center of the jet is located at the distance of 32.5 from the
entrance. Airflow and jet parameters are: Py, = 1000 Pa, T» = 800 K, Re = 10%, Pr =
0.9, Yoo, = 0.2, Yoon, = 0.8, My =1, Tp = 627 K, Ypg, = 1,n = 15. The boundary layer
thickness d; = 1.28 is computed for x = 145 and specified at the inlet section. The near-wall
layer height corresponds to the laminar-turbulent sublayer z* = 70, where 2™ = du, Re, and

the boundary layer height is 2+ = 3700, where 2™ = §;u, Re. Here u, = \/g is the dynamic
viscosity, Cy is the flow friction coefficient on the wall. The numerical grid is 401 x 351.
The grid refinement near the wall gives the first node near the wall equal to 2T = 1.5. At
the entrance nodes 5-8 lie in the near-wall layer along the z-axis and entire boundary layer
is calculated with the use of 35-40 nodes of the numerical grid. The flow Mach number of
flowfield is varied in the range 2.5 < My, < 4.5.

The isobar distribution is presented in Figure 3 (a) Mo = 2.5, b) My = 3.0, ¢) My =
3.5, d) My = 4.0, ) My, = 4.5). The well-known and widely represented in various papers
[7]-19], [38] ahead of the jet shock — wave structure is visible for all values Mach number.
From Figures 3a—3e it is seen that the inclination angle of the bow shock wave 1 and size of
the A\ — shape shock (which formed because intersection of the bow shock 1, oblique shock 2
and reflected shock 3) are decreased with growth of My,. Such behavior is apparently due
to growth of incoming flow velocity. After reaching the upper wall, the bow shock 1 creates
positive pressure gradient (Figures 3a—3e), leading to the separation of the boundary layer
near upper wall, moreover, the larger the angle of inclination bow shock wave 1, the larger the
pressure gradient. From Figure 3 one can see that the supersonic part of the upper boundary
layer deviates and generates the system of converging compression wave 4, which propagates
as the reflected shock wave 5. And the secondary system of compression waves is appeared as
a result of reattachment of the separated flow to the streamlined wall, which is the reflected
shock wave 6. It is visible (Figures 3a—3e) the bow shock 1, the compression wave 4 and the
reflected shock 5 intersect at a single point and form A\ — shaped system. The size of this A —
shaped structure reduces with increasing the Mach number, and this can be observed through
comparing Figures 3a—3e. In Figure a for an additional A — shaped structure is appeared near
bottom wall behind the jet. Shock wave 6 reaches the bottom boundary layer behind the
jet, where creates compression wave 7, which propagates in the form of shock 8. The weak
reflected shock 9 is can also be seen here.

The behavior of a flowfield for different M, is demonstrated the iso — Mach line contours in
the jet injection region in Figures 4a—4e (a) My = 2.5, b) Moo = 3.0, ¢) M = 3.5, d) My =
4.0, e) M, = 4.5). For all cases, the sonic velocity of the jet becomes supersonic because of
the acceleration after injection and as can be observed from the Figure 4, a barrel structure
is formed. It is visible from Figures 4a—4e that the barrel-shock structure in the jet decreases
with increasing Mach number. Hence, jet penetration decreases too. It is due to the reduction
of the hydrogen momentum with respect to the incoming airflow momentum. Consequently,
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Figure 3 — Distribution of isobars at various Mach
number: a) Mo, = 2.5, b) My, = 3.0, ¢) Mo, = 3.5, d) M, =4.0, ) Mo, =4.5
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a)

b)

c)

d)

Figure 4 — The local Mach number contour at various Mach
number: a) Mo, = 2.5, b) My, = 3.0, ¢) Mo = 3.5, d) Moo, = 4.0, ) Mo, =4.5
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Figure 5 — The velocity vector field profiles at various Mach
number: a) Mo = 2.5, b) My = 3.0, ¢) Mo, = 3.5, d) M, =4.0, ) Mo, =4.5
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a)

Figure 6 — The distribution of hydrogen mass fraction at various Mach
number: a) Mo, = 2.5, b) My, = 3.0, ¢) Mo = 3.5, d) Moo, = 4.0, ) Mo, =4.5
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the barrel size is diminished.

The graph of velocity vector field which is represented in Figures ba—be (a) My =
2.5, b) My = 3.0, ¢) My = 3.5, d) My = 4.0, ) My = 4.5) demonstrates that the
recirculation zones ahead and behind the jet are become smaller with the growth of Mach
number. Figure 5a shows for M., = 2.5, besides the well-known behind the jet vorticity
zone, additional separation zone is formed on the bottom wall behind jet at the distance
45 < x < 60. This separation is due to the interaction of the shock wave 6 with the boundary
layer (SWBLI) on the bottom wall at distance x = 75. The size of separation bubble at
the upper wall is reducing and moving upstream growing Mach number. It can be noticed
comparing Figures 5a—be that the jet penetration increases with growth of M.,. This is also
confirmed by the mass fraction of species contours shown in Figures 6a—6e. As can be seen,
this is verified by Figure 7, which presents the influence of various Mach number on the jet
penetration. The hydrogen jet penetration decreases sharply from M., = 2.5 to My, = 3.0,
then declines moderately between My, = 3.0 and My, = 4.5 (Figure 7).

Figure 7 — Effect of various Mach number on the jet penetration

6 Conclusion

The influence of the Mach number on the supersonic flow dynamics with transverse hy-
drogen jet injection is numerically studied in detail. It is revealed that inclination angle of the
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bow shock wave 1 and size of the A — shape shock (which is formed because of the intersection
of the bow shock 1, the oblique shock 2 and the reflected shock 3) decrease with growth of
M. On the upper wall it is formed one more additional A — shaped system (the bow shock 1,
the compression wave 4 and the reflected shock 5 are intersected at a single point). The size of
this A — shaped structure reduces simultaneously with the increase of the Mach number. For
My = 2.5 an additional A — shaped structure appears near the bottom wall behind the jet
due to the shock wave 6 reaching the bottom boundary layer behind the jet, where it creates
the compression wave 7, which propagates in a form of the shock 8. Consequently all vortex
structures at the upper and the bottom walls resulting from the interaction of the shock-wave
structures with the boundary layers (SWBLI) increase with declining of the Mach number.
The additional A — shaped structure near the bottom wall behind the jet for the Mach number
2.5 generates the additional separation zone on the lower wall at a distance z = 75. It is
received that the barrel — shock structure in the jet decreases with increasing of the Mach
number. Hence, jet penetration decreases and this is also confirmed by results of the mass
fraction of species. The influence of the Mach number on the hydrogen jet penetration is
determined. The result shows a sharply decrease in penetration from My, = 2.5 to My, = 3.0,
then with the Mach number greater than three it is declined moderately. A comparison of
computations with experimental data shows a satisfactory agreement of results.
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Ammposa I'A., Bekeraesa A.O., Haiimanosa A.2K. CYTEIl AYBIHBIMEH YP-
JIEHETIH 2KOYTAPBbI ABIBEBICTBI AYA AYBICBIHBIH MAX CAHIOAPBI oPTYPJII
BOJITAHJIAYHBI CAHABIK MOJAEJIJIEVI

Kem koMIoHEHTTI »KOFapbl JBIOLICTHI a3 aFbIChl CyTeri arblHbl KOJIIEHEH YPJIEHETIH Teric
apHaJa MojeaeHe . k — w TypOyaIeHTTIK MofeiMeH TyibIiKkTa ran PaBp OOMBIHINIA OpTallia-
saarad Hapwe-Croke Tenpeynepi yiniami perti ENO cbI36achbid KOIgaHy apKbLIbl IIEITiIe].
ArpicTbi, Max caHBIHBIH, COKKBI TOJIKBIHBI KYPbLIBIMBIHBIH, KAHAJIBIH YKOFapFbl XKOHE TOMEHT1
KaObIpraJIapbIHIAFDI IIeKapasIblK KabaTTapMeH iIKi TypOy/IeHTTI arblH JKafIaflbIHIarbl ©3apa
opeKeTTecyine ocep eryine 6acThl Ha3ap aygapblLIajbl. Atamn afiTkanga, Max cangapbl opTyp-
Jii BOJIFAHIAFbI COKKBI TOJIKBIHBIHBIH, KYPBLIBIMbI, aXKbIPay aliMaKTapbl, aFbICTBIH Kipill KeTyi
erskeil-rerskeitsii 3eprreseni. Max caHbIH ecipreHje »Koraprbl »KoHe TOMEHTT KaObIpraJapia
JKoHe KYWBIHIBI aiiMakTap/a maiiia OOJaTbIH, COKKBI TOJKBIHIAPBIHBIH KYPbLIBIMIADBIHBIH
nrekapaJiblk, Kabarrapmer (SWBLI) e3apa opekerrecyi mormkecinje maiija 60JaTbIH COKKDI
TOJKBIHIaPbIHBIH, KYPbIJIBIMIAPBIHBIH, a3adTbIHAbBIFbI aHbIKTaJIAbI. AF]::ICTbIH MaX CaHBbIHBIH,
KIITiripiM MOHJIEP] YITH COKKBI TOJTKBIHIAPBIHBIH, KYPBLIBIMIAPBIHBIH, AFBIHHBIH, ChIPTHIHIAFbI
TOMEHI1 KaObIpraJlarbl KOCHIMIIA e3apa spekerrecyi aHbIKTaaabl. CoHgaii-ak, Max caHbIHbBIH,
ecyi Ke3iHje arbICTBIH Kipill KeTyiHiH kemyi Oaikasabl. ToxKipubeaik MoiMeTTepMeH Cajibl-
CTBIPY KACAJIIbI.

Kinrrik cesznep. Hapbe-CToKC TeHgieyiepi, NBIOBICTAH YKOFAPBI aFbIH, COKKbI TOJIKBIHBI,
aXKbpIpay afiMarbl, IeKapaJsblk Kabar, Max caHb.

Ammposa I A., Bekeraesa A.O., Haiimanosa A.2K. YYCJIEHHOE MOJIEJ/IMPOBAHUE
CBEPX3BYKOBOTI'O ITIOTOKA BO3AYXA C B/IYBOM CTPYU BOJIOPOIA IIPU
PABJIMYHBIX YNCJTAX MAXA

Monenupyercss TedeHrme MHOTOKOMIIOHEHTHOTO CBEPX3BYKOBOI'O ra3a B IJIOCKOM KaHaJIe
¢ TIOIEPEeYHBIM BIYBOM CTpyHU Bojopoxa. Pemenue ocpemrennbix o Paspy ypaBruenuii Ha-
Bbe—CTOKCa, 3aMKHYTBIX k — W MOJEJBbIO TYPOYJIEHTHOCTH, OCYIIECTBJISIOTCS C HCIOJIB30Ba-
mreMm cxembl ENO Tperbero mopsinka. OcHOBHOE BHUMAHME YeJIeHO BJIMSHUIO 4dncia Maxa
ITOTOKA Ha B3aUMOJIEHCTBUE CTPYKTYPhI YIAPHON BOJIHBI C IIOIPAHUIHBIMHE CJIOSIME Ha BepXHel
U HIDKHEH cTeHKaxX KaHaJla B yCJIOBHUSIX BHYTPEHHEro TypOyJIeHTHOIO IToTOKa. B gacTHOCTH, Ie-
TaJILHO MCCJIEAYIOTCS CTPYKTYPa yIapHO# BOJIHBI, 30HBI OTPbIBA, TPOHUKHOBEHUE CTPYHU IIPU
pa3JMYHBIX 4Ynciaax Maxa. YCTaHOBJIEHO, 9TO CTPYKTYPBI YAAPHBIX BOJIH, BO3HUKAIOIINE Ha
BepxHel U HUXKHEH CTeHKaxX U BUXPEBBIX 30HAX, BO3HUKAIOIINE B PE3YJILTATE B3AUMOICHCTBUA
CTPYKTYD YAapHBIX BOJH ¢ morpanudubiMu cyiosivu (SWBLI), ymenbimatorcess npu yBesinde-
aun uncyaa Maxa. [Ipu Manbix 3HaueHnssX qucja Maxa IMoToka oOHapy»KEeHO JOIOJHUTEIFHOE
B3aMMOJIEICTBIE CTPYKTYP VAAPHBIX BOJH Ha HUXKHEH CTeHKe 3a cTpyeil. Tak:ke obHapyKeHO
yMEHbIIIEHNEe TPOHUKHOBEHUsi CTpyu ¢ yBejaumderuem ducia Maxa. [IpoBeneno cpaBueHue c
9KCIIEPUMEHTAJIbHBIMEA JTAHHBIMI.

Kmrogesnbre ciiopa. Ypasuenuss Hapbe—CToKca, CBEP3BYKOBOE TeUEHUE, YAapHAs BOJHA, OT-
pPBIBHAST 30HA, ITOIPAHUYHLIN cjIoit, unciao Maxa.
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Abstract. We approximate the microscopic Maxwell boundary condition for one-dimensional Boltz-
mann equation when some of molecules are reflected from the surface specularly and some diffusely
with Maxwell distribution. We formulate the mixed value problem for the first and third moments
of Boltzmann system of equations with macroscopic boundary conditions. We prove the existence
and uniqueness of the solution of mixed value problem for one-dimensional nonlinear nonstationary
Boltzmann moment system of equations in first and third approximations with macroscopic boundary

conditions at in space of functions continuous in time and summable in square by spatial variable.

Keywords. Boltzmann moment system of equations, microscopic Maxwell boundary condition, macro-

scopic boundary conditions.

1 Introduction

Many problems of rarefied gas dynamics require solving problems for Boltzmann equation.
Prediction of the aerodynamic characteristics of aircraft at very high speeds and at high alti-
tudes is an important problem in aerospace engineering. In case of a gas flow near a solid body
or inside a region bounded by a solid surface, the boundary conditions describe the interaction
of gas molecules with solid walls. Unfortunately, it is almost impossible to conduct experi-
ments to study the interaction of gas with a surface at very high speeds and at high altitudes.
The aerodynamic characteristics of aircraft at very high speeds and at high altitudes can be
determined by the methods of the theory of rarefied gas [1]. For analyzing aerodynamic char-
acteristics of aircraft in transient regime the complete integro-differential Boltzmann equation
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is used with appropriate boundary conditions. Determination of the boundary conditions on
surfaces that are streamlined with rarefied gas is one of the most important questions of the
in kinetic theory of gases. In high-altitude aerodynamics the interaction of gas with surface
of a streamlined body plays an important role [2]. The aerothermodynamic characteristics
of bodies in a gas flow are determined by transfer of momentum and energy to the surface
of the body, that is, the relationship between velocities and energies of molecules incident
on the surface and molecules reflected from it, which is the essence of the kinetic boundary
conditions on the surface. Maxwell boundary condition for solving specific problems more
accurately describes the interaction of gas molecules with the surface. One of the approxi-
mate methods for solving the initial-boundary value problem for Boltzmann equation is the
moment method. Using this method, it becomes possible to determine the aerodynamic char-
acteristics of aircraft such as atmospheric parameters, flight speed, geometric parameters, and
like that. In the work [3], two new models of boundary conditions were proposed: diffusive-
moment and mirror-moment, generalizing the known boundary conditions of Cherchinyani;
in work [4], the aerodynamic characteristics of space vehicles were studied by the method of
direct static modeling (Monte Carlo method) and various models of the interaction of gas
molecules with a surface and their effect on aerodynamic characteristic. Moment methods
are the different from each other as sets of various systems of basis functions. For example,
Grad in works [5] and [6] obtained a moment system through decomposition of particles dis-
tribution function by Hermitte polynomials near the local Maxwell distributions. Grad used
Cartesian coordinates of velocities and his moment system contained unknown hydrodynamic
characteristics such as density, temperature, average speed, etc. In work [7] we obtained mo-
ment system which differs from Grad’s system of equations. We used spherical coordinates of
velocity and distribution function was decomposed into series by eigenfunctions of linearized
collision operator [1], [8], which is the product of Sonin polynomials and spherical functions.
The expansion coefficients, the moments of distribution function are defined differently from
Grad. The resulting system of equations corresponding to a partial sum of series, which we
call Boltzmann moment system of equations, is nonlinear hyperbolic system relative to the
moments of particles distribution function. Differential part of the resulting system is linear
and quadratic nonlinearity has the form of moments of a distribution function. Quadratic
forms, that is the moments of nonlinear collision ingerals, are calculated in [9] and are ex-
pressed in terms of coefficients of Talmi [10] and Klebsh-Gordon [11].

In the works [12]-[13] there were obtained moment systems for spatially homogeneous
Boltzmann equation and conditions for representability of the solution of spatially homo-
geneous Boltzmann equation in the form of Poincaré series. The method proposed in [12]
(application of Fourier transform with respect to velocity variable in isotropic case) greatly
simplified the collision integral and, hence, calculation of moments from of collision integral.
In work [13] the results of [12] were generalized for in case of anisotropic scattering.

Levermore C.D. in the work [14] presented systematic nonperturbative derivation of hi-
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erarchy of closed systems of moment equations corresponding to any classical theory. This
paper is a fundamental work where in which closed systems of moment equations describe
the transition regime.

The Boltzmann equation is equivalent to an infinite system of differential equations for
the moments of the particle distribution function in the complete system of eigenfunctions
of linearized operator. As a rule, we limit study to the finite moment system of equations as
solving the infinite system of equations is not possible.

The finite system of moment equations for a specific task with a certain degree of ac-
curacy replaces the Boltzmann equation. It is necessary, also roughly, to replace boundary
conditions for the particle distribution function by a number of macroscopic conditions for
moments, i.e. there arises a problem of boundary conditions for a finite system of equations
that approximate microscopic boundary conditions for the Boltzmann equation. The prob-
lem of boundary conditions for a finite system of moment equations can be divided into two
parts: how many conditions must be imposed and how they should be prepared. From micro-
scopic boundary conditions for the Boltzmann equation there can be obtained an infinite set
of boundary conditions for each type of decomposition. However, the number of boundary
conditions is not determined by the number of moment equations, i.e. it is impossible to take
as many boundary conditions as equations, although the number of moment equations affect
the number of boundary conditions. In addition, the boundary conditions must be consistent
with moment equations and the resulting problem must be correct.

Grad in [5] described the construction of an infinite sequence of boundary conditions
without consent of the order of approximation for decomposition of boundary conditions
and expansion of the Boltzmann equation. Construction of boundary conditions (even one-
dimensional Grad’s moment system of equations) is a difficult task as Grad’s moment system
of equations is a hyperbolic system and this system contains unknown parameters for co-
efficients, such as density, temperature, average speed, etc. In this case, the characteristic
equation also depends on unknown parameters and it appears to be difficult to formulate
the boundary conditions for the moment system. In the work [15] there were discussed the
boundary conditions for the 13-moment Grad system.

In the work [7] we showed approximation of homogeneous boundary condition for par-
ticle distribution function and proved the correctness of the initial-boundary value problem
for nonstationary nonlinear Boltzmann moment system of equations in three-dimensional
space. More precisely, we proved the existence of a unique generalized solution for the initial-
boundary value problem for Boltzmann moment system of equations in the space of functions
continuous in time and summable by square in the space of variables. In addition, an ap-
proximation of microscopic boundary condition for three-dimensional Boltzmann equation
was given. The boundary condition is given in a form of integral relation between particles
incident on the boundary of particles and reflected from the boundary of particles.

The boundary condition can be formulated as follows: determine the mirrored half of
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the distribution function from the known half, corresponding to the incident particles. The
boundary condition is specified as an integral relation between particles incident on the
boundary and particles reflected from the boundary (assuming that we know the probability
of an event that a particle incident on the boundary with velocity v; is reflected with velocity
Up).

However, in practice, the fluxes of particles incident on boundary and reflected from it
are determined by numerically solving the corresponding mixed problem for various approxi-
mations of Boltzmann moment system of equations. Therefore, the study of mixed problems
for moment equations is an urgent and important problem of the in dynamics of a rarefied
gas.

In this work, we give an approximation of the microscopic boundary condition when part
of molecules is reflected from the surface specularly and part is diffused by the Maxwell dis-
tribution. For this case, macroscopic boundary conditions for two-moment and six-moment
system of equations were obtained from microscopic Maxwell boundary conditions. Let us
prove the existence of a unique solution of the mixed value problem for one-dimensional Boltz-
mann moment system of equations in the first and third approximations (two-moment and
six-moment system of equations) in the space of functions continuous in time and summable
in square by spatial variable.

2 Investigation of the existence and uniqueness of solution of mixed value
problem for non-stationary nonlinear one-dimensional system of Boltzmann mo-
ment system of equations in the first and third approximations under macroscopic
Maxwell boundary conditions

In case of gas flow inside a region bounded by a closed or open surface, or near a solid body,
the boundary conditions are specified in the form of ratio between particles incident on the
boundary and reflected from it. If the initial distribution of gas molecules is known, then the
further evolution of the gas is described by the Boltzmann integro-differential equation. So,
the problem reduces to solving initial-boundary value problem for the Boltzmann equation.
Here we show the formulation of the initial-boundary value problem for the one-dimensional
Boltzmann equation under Maxwell boundary conditions without going into details of interac-
tion of gas with wall. We will approximate initial-boundary value problem for the Boltzmann
equation by the corresponding problem for the system of Boltzmann moment equations in
first and third approximations and show the correctness of the obtained problems.

We note that Mischler S. in work [16] proved a theorem on the existence of a global
solution to the initial-boundary value problem for the 3-dimensional nonlinear Boltzmann
equation under the Maxwell boundary conditions.

Statement of the problem. Find a solution to the initial-boundary value problem for a
homogeneous one-dimensional Boltzmann equation

of + || cosﬁgf

5 5 = (£ 1), t€(0.T], 2 € (~aa), v € RS, (1)
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f|t:0 = fo(x7v)7 (:U,U) € [_a7 a] X Rgv (2)
2
f+(t,$,'l)1,'l)2,?}3) = 5f7(t,.’1,'7’l}17’l]2, _1)3) + (1 - ﬂ)neXp ( - 2|;‘1—10>7
v3 = |v|cos b, (n,v) = (n,|v|]cosh) >0,z =—-a or x=a, (3)
where f = f(t,z,v) is a particle distribution function in the space of velocity and

time; fO(x,v) is a distribution of particles at the initial time (fixed function); J(f, f) =
JIf@) f(w') — f(v) f(w)]o(cos x)dwde is a nonlinear collision operator recorded for Maxwell
molecules, n is unit external normal vector of boundary, v, w(v’, w’") are velocities of particles
before (after) a collision; 6 is the angle between v and z axis.

The condition (3) is a natural boundary condition for the Boltzmann equation, which
makes it possible to determine the reflected half of distribution function f, if we know the
half corresponding to the incident particles. According to (3) some of the incident particles
are reflected specularly and others are absorbed by the wall and emitted with a Maxwell
distribution with the corresponding wall temperature 1.

Formula (3) refers to the case of wall at rest; otherwise v must be replaced by v — ug, ug
being the velocity of wall. 3, Ty, up may vary from point to point and with time [8].

For one-dimensional problem eigenfunctions of linearized operator are [1], [8]:

(L) P Calul ! e (@0 _
gni(aw) = <2F(n—|—l—|—3/2) 7 S, 5 P(cosh), 2n+1=0,1,2,... ,
1+1/2

where Sy, (%) are Sonin polynomials, P;(cos ) are Legendre polynomials, I' is Gamma
function.

To find an approximate solution of problem (1)—(3) we apply the Galerkin method. We
define an approximate solution to problem (1)—(3) as follows:

2N+1
f2N+1(t,l’,?)) = Z fnl(t,.’f)gnl(oﬂ}), (4)
2n+1=0
/ (afg“ + v cos@afg]lﬂ - J(fQNH,fQNH))fo(a\ngnl(av)dv =0, (5)

Ry
2n+1=0,1,....2N + 1, (¢t,z) € (0,T] x (—a,a),

/[fQN-l-l(Ov Z, U)_ng—i-l(xv U)]fO(a‘v’)gnl(av)dv =0, 2n+1=0,1,...,2N+1, z€ (—CL, a)v (6)
iy

/ (nvU)fo(a’UDfZ—FNJrl(t?wvU)gn,2l(av)dv_6 / (n7 —v)fo(a]v|)f2_N+1(t,a:,v)gnm(av)dv

(n,v)>0 (n,w)<0
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o[

—-(1-7) / (n, —v) fo(r|v]) exp < " 9RT,

(n,v)<0

>gn,21(av)dv =0, (7)

2(n+1)=0,2,..,2N, x = —a or xz=a,

where n = (0,0,1) with x = a and n = (0,0, —1) with z = —aq;

2\ 3/2 2,2
o =(2) o (-57)

2

is a global Maxwell distribution, o = RLTO;

fult,) = / Jona (t, 2, 0) fo(alo]) gui(av)do,

Ry
2N+1
f2N+1 r,v) Z fnl ) g (ow)dv
2n+1=0
0 (x) = / £ 4120, 0) fo(alv] ) gaa (o) do. (8)
R

In general, the approximation of the boundary condition (3) depends on the parity or
oddness of approximation of the Boltzmann moment system of equations [17]. In approxi-
mating the microscopic boundary condition we took into account the approximation of the
Boltzmann equation by the moment equations corresponding to the odd approximation of the
Boltzmann moment system of equations. Thus, the approximation orders for the expansion
of the boundary condition and the expansion of the Boltzmann equation are consistent. The
macroscopic conditions (7) we called the Maxwell boundary conditions [17].

The Boltzmann system of moment equations (5) corresponding to decomposition (4) can
be written in extended form:

Ofm , 10 2(n+1+1/2) 2(n + 1)
(‘9tl T aor [l<\/(2z @y \/(21 —1)(20 + 1)f”+17l—1>

2(n+1+3/2) 2n B
+(+1) (\/(QZ 120+ 3) Jnjg+1 — \/(2l T+ 3)fn—l,l+l>] = Iy, 9)

2n+1=0,1,...,2N + 1,
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where the moments of collision integral can be expressed in terms of coefficients of Talmi and
Klebsh-Gordon as follows [6]:

Inl = Z<N3L3n3lg : l|nl00 : l>(N3L3n3l3 : l|n111n2l2 : l> (l10l20/10)(013 — UO)fnlllfnglga

(N3Lsnsls : [|n1linala : 1) are generalized Talmi coefficients, (1;0020/10) are Klebsh-Gordon
coefficients. In this formula summation is carried out over all repeating indices N3Lsnsls, nil;
nals, and they take a number of values which determined from the following restrictions:

1. energy conservation law 2n; + I1 + 2ng + lo = 2N3 4+ L3 4 2n3 + I3;

2. parity conservation law (—1)h+2 = (—1)ks+ls,

A program was also compiled for calculating the values of Talmi coefficients. If in (9)
2n+1 takes values from 0 to 1, then we obtain the following system of equations corresponding
to the first approximation of the Boltzmann moment system of equations or the two-moment
system of the Boltzmann equations

dfoo | 10fon
—— + ——— =0
ot + a Or ’
Ofn 10
- =0. 10
ot + aam(foo) (10)
We introduce the following designations: v = foo, w = fo1, A= é(l), B = T\I/E(ﬁ)

Here, a mixed value problem for two-moment system of Boltzmann equations under the
Maxwell boundary conditions is formulated. Find a solution to the system of equations

ou ow
A e
ot Tor =0
ou ,0u
5 T AG =0, 1€ (0.T], z € (~a.a), (11)

satisfying the following initial condition
u‘t:O = ug(x), w’t:() = WO(x)a T € (_aaa)a (12)

and boundary conditions

(Awt — BuT)|pe—q = B(AW™ + Bu™)|ye—a + (y\l/%(l — B)F, t€10,T], (13)

(Aw™ + But)|pza = B(Aw™ — Bu™)|p—a + a\l/?r(l — B)F, t€[0,T), (14)

where ug(x), wo(z) are given functions, F' = ﬁ.
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Problem (11)—(14) represents a linear hyperbolic system of equations regarding u, w.

Similarly, if in (9) 2n + [ takes values from 0 to 3, then we obtain the following system
of equations corresponding to the third approximation of the Boltzmann moment system of
equations or the six-moment system of Boltzmann equations

0 10
Jfoo L1 Jor

ot a Ox =0,

Ofo2 10 3 22 B
5t T (\[fm \/5f 3 — \/ﬁfn) = Joz,

8afi0 aax< \/>f01+\/>f11>= ,
8f01 ;8 <f00+f02—\/7f10>: ;

Ofo3 10 3
TS +- 97 \/>f02 Jos,
ofn , 10 2v/2 \/3
SRS R e i - t 1
3 +aa$< \/ﬁf02+ 3flo Jiu, € (—a,a), t >0, (15)
where foo = foo(t,x), for = foi(t,z),..., fi1 = fi11(t,z) are moments of particle distribution

function;

Jo2 = (02 — 00)(foo foz — f21/V3)/2,

1 1
Joz = 1(03 + 301 — 409) foo foz + m(le + 09 — 303) fo1 fo2,
1 /5 V2
J11 = — 4/ = _ Y=
11 = (01 — 00)(foofor + 2\/;f10f01 \/ﬁfmfoz

are the moments of collision integral, where o9, 01, 02, 03 are constants.
The mixed value problem for the Boltzmann six-moment system of equations under the
Maxwell boundary conditions is as follows: find solution to the system of equations

ou Ow
o A, — AW,
ou ,0u
675 A a$ JQ(U7W)7 US (—CL, CL), (16)

satisfying the following initial condition

u‘t=0 = UO($)> w|t:0 = wa)7 T € (_a7a)7 (17)
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and boundary conditions

1

Awt — BuM)|pe—g = B(Aw™ + Bu |ge—q + —=(1 = B)F, t .71, 1
(Aw u")|g= B(Aw™ + Bu™)[z= +aﬁ( B) € [0,T] (18)
1
AwT + Bu)|yeqg = B(Aw™ — Bu ) |peg + —=(1 — B)F T 1
(Aw™ + Bu™)|z=a = B(Aw U)!_Jraﬁ( B)F, t €[0,T], (19)
where
2 1
1 ; g g\/i 1 V25 oo
A==—| B B U || B=—+ \/52\/5 1
« 5 5 ay/T 3
-3 0 \/; —d -1 32

Jl(u7w) = (07 J0270)/7 JQ(UJ w) = (07J037J11)I7

u = (foo, foz, f10)'s w = (for, fos, f11)’, F = ﬁ; 8%/5; 8\1/§>/’ A’ is a transposed matrix, B

is a positive defined matrix; ug(x) = (f (), [ (), fio(@)), wo(z) = (O (x), f5(z), f ()
are given initial vector functions; w™, u™" are the moments of incident on the boundary particle
distribution function, w™, 4~ are moments of distribution function of particles reflected from
the boundary. (16) is a vector matrix form recording of the system of equations (15).

Due to the cumbersome computations, we omit the derivation of the boundary conditions
(13)—(14) and (18)—(19) and rationale for the number of boundary conditions is given in
conclusion.

We prove the following theorem.

Theorem 1. If Uy = (uo(x), wo(x)) € L?[—a,al, then problem (11)-(14) has a unique
solution in domain [—a,a) x [0,T], belonging to the space C([0,T]; L?|—a,a)]), moreover
1Ullcqoiry;z2i-aa) < CrlllUollL2(-aa + I fllcqom);L2~a.a)): (20)

where C1 is a constant independent of U, function f will be defined below.

Proof. Let Uy € L?[—a,a]. Let us prove estimation (20). We multiply the first equation of
the system (11) by w and the second equation by w, and integrate from —a to a :

a a

1d ow ,0u
o /[(u,u) + (w, w)]dz +/ [(A%,u) +(A %,w)]daz ~0.
After integration by parts we obtain
1d | L s
% [(u,u) + (w,w)]dx + (™, Aw™ ) |g=q — (U™, AW )|z=—q = 0. (21)

—a
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Taking into account the boundary conditions (13)—(14) we rewrite equality (21) in the
following form

1d 1
Sd [(u,u) + (w,w)]dz + (Bu™,u” )|g=a + (Bu™, 4" )|z=—a — B((Aw+ — But),u")|e=—a
1
+B«Aw+ + Bu"),u7)|e=a + (F1, 47 )|o=a + (F1,u7)|e=—a = 0, (22)
where F] = (1/8\1?71}7

Let us use spherical representation [18] of the vector U(t,x) = r(t)w(t, z), where

w(tv l’) = (wl(t,m),wQ(t,x))',r(t) = ||U(t7 ')||L2[—a,a]7 ”wHL2[—CL,(l] =1
Substituting values u = r(t)w1(t, ), w = r(t)wa(t, z) into (22), we have that

dr

S+ TP = —f(@), (23

where

P(t) = (Bwy ,wy )|z=a + (Bwy ,w; )|z=—a

+2[(Awy, wi)|z=a + (Bw{, 0y )le=a + (Bwy, @y )a=—a — (Awy’, wy ) |e=—al,

| =

f(t) = (F1,w1)|a=a + (F1, w1 )|o=—a-
Let us study equation (23) with the initial condition
r(0) = [|Uoll = 1Uoll L2[—a.a (24)
The solution of problem (23)—(24) has following form

T

—e$p /tp dT |yU0||—/f exp /P(g)dg)df] (25)
0

0

In equality (25) integrand f(7)exp(— f P(&)d¢§) is bounded. Therefore, YVt € [0, T apriori

estimation (20) is valid, where T is any bounded real number. We can prove existence of the
solution to of the problem (11)-(14) by Galerkin method. The uniqueness of the solution to
the of problem (11)—(14) followed from apriori estimation (20).

Theorem is proved.

For problem (16)—(19) the following theorem takes place [19].
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Theorem 2. If Uy = (ug(w),wo(x)) € L%*[—a,al, then problem (15)-(19) has a unique
solution in the domain [—a,a] x [0,T], belonging to the space C([0,T]; L*[—a,a]), moreover

U L2[=a,a) = T1lleoir);22(-asa]) < C2(1Uoll£2—a,q) — 71(0)), (26)

where Cy is a constant independent of U and T ~ O(||Uo||p2[—q,a] — r1(0)71), r(t) is a
partial solution of the Riccati equation % +rP(t) = r2Q(t) — f(t), P(t), Q(t), f(t) are given
functions.

For proving this theorem the methods of apriori estimation, Galerkin method and Tartar’s
compactness compensated method were used [20]. This theorem describes the existence and
uniqueness of a local on time solution to the of initial-boundary value problem (16)-(19).

3 Conclusion

1. The system of equations (11) contains two equations corresponding to the laws of
conservation of mass and momentum, and represents a linear hyperbolic system of equations

1
regarding u, w. Matrix ( (1) 0 > has two eigenvalues Ay = —1, A9 = 1. Therefore, for cor-

recting the problem two boundary conditions must be specified — one boundary condition with
outgoing characteristic and the other one for incoming characteristic. For initial-boundary
value problem two boundary conditions (13) and (14) are specified, which correspond to the
1
0
solution for the initial-boundary value problem (11)—(14).

2. System (16) is a symmetric hyperbolic nonlinear system of partial differential equations.
Indeed, direct calculations show that

number of eigenvalues of matrix < (1) . In Theorem 1 the existence of global in time

0 A
detAl—det<A, O);«EO

and matrix A; has three positive and the same number of negative nonzero eigenvalues,

namely /(3 4+ v6), ~1, —/(3 — v/6), \/3 — v6),1,/(3 + V6). It follows from (18)(19),
that the number of boundary conditions on the at left and right ends of the interval (—a,a)
are equal to the number of positive and negative eigenvalues of matrix A;. Theorem 2 claims
the existence of a unique local on time solution for problem (16)-(19), since the length of
time during on which there is the solution to the of problem (16)—(19) the depends on the
difference in norm of the initial vector function and value of a particular solution of the
Riccati equation at the initial time in degree —1.

3. The moments foo, fo1, fio are expressed by macroscopic characteristics of gas such as
density, average speed and temperature. More exactly, we have following equalities

= 2 e (PR Ly
foo = p, for = apV, fio = \/;p \/;oz ,0<2l<:0+ 2V ),
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where p is a density of gas, V is an average speed of gas, 6 is a temperature of gas and « is
a constant (in special case & = 1). Moreover, we have the following equality

foo + \%fm - \/gfll) = a(Ps3 + pV'?),

where P33 is a component of a stress tensor.
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Ayxanu E., Cakabekos A.C. BOJIbBIIMAH MOMEHTTIK TEHJIEYJIEPIHIH CTAILII-
OHAP EMEC BIP OJIIIEM/II BENCHI3BIK YKYMECI YIIIH MAKPOCKOIIMAIBIK
ITEKAPAJIBIK ITAPTTAPHI BAP BIPIHIII >KOHE YIHIHIII 2KYBIKTAYJIAPIAT' BI
APAJIAC ECEBI

2Kywmpicta 6ip emmmemi Bosibiivan Terieyi yImia MEKPOCKOIUSIBIK, MaKCBeIT IeKapaIbik,
IAPTHI AIMIIPOKCUMAIIAAIAHAIbI, MYHIA MOJIEKYyJIaaapAabiH, Oip Gesiri 6erTeH ailHajIbI IIarbl-
Jibicca, aji KajraH Oeiiri MakcBest yirectupiMmisiri OoibraIma Tud@y3UIIbl MIAFbLIBICATEI.
Bip emmemal GeiichbI3bIK, cTarmoHap emec BoJibliMaH TeHIeyJIepidi, »Kyiecinin, OGipiHim »KoHe
VITHIN 2KYBIKTAYJIaPbl VIITiH MAaKPOCKOIMSIIBIK, IIIEKAPAJIbIK APThl 0ap apaJjac ecern TYKbl-
peiMaasrad. Bip emmemal GefCHI3BIK, CTaOHap eMec BosbIMaH TeHIeysIepiHiH >KyHeciHiH,
GipiuIi »koHe VINHIN KyBIKTay/1apbl YITiH MaKPOCKOIUSIBIK, MEKAPAJIBIK IMAapThl 6ap apa-
Jlac €CeITiH yaKbIT aifHbIMAJIBICHI OOMBIHINA Y31/IiCCi3, a1 KeHICTIKTIK ailHbIMAJIBICHI OOMbIHIIIA
KBJIPAT KOCHIHIBLILIHATHIH (DYHKIHAAIAP KEHICTITiH e MelTiMiHiy 6ap eKeHIir KoHe XKaIFbl-
BJBIFBI J0JICJIICHIEH.

Kinrrix ceznep. BonbiiMan MOMEHTTIK TeHIeyJIepiniy xKyiteci, MakcBem MUKpPOCKOIHs-
JIBIK HIEKaPAJIbIK, IIaPThl, MAKPOCKOIUAIBIK, IIIeKAPAJIbIK, IIapT.

Ayxanu E., Caxabekos A.C. CMEHIIAHHAYA 3AJAYA ]I HECTALIMOHAPHON
HEJIMHENHON OAHOMEPHOI CUCTEMBI MOMEHTHBIX YPABHEHUI BOJIbII-
MAHA B IIEPBOM U TPETBEM IIPUBJIN?KEHNAX C MAKPOCKOIIMYECKIMMU
I'PAHUYHBIMU YCJIOBUAMU

B pabore MBI anmpokcuMupyeM MHKPOCKOIUYIECKOe TPaHndIHOe ycjioBue Makcpesia Jiist
OJJHOMEPHOI'O ypaBHEHU:A ]SO.HI)I_LMaHa7 KOorga YacCTb MOJIEKYJI OTpazKaeTCd OT IMTOBEPXHOCTHU
3epKaJIbHO, a JacTh auddysnonno mo MakcsesmmoBckomy pacupeaenennio. ChopMyanpoBaHa
CMeIllaHHasl 3aJa49a, JJIsl IEPBOr0 U TPETHEro MPUOJIMXKEHN cCUcTeM ypaBHeHUs BoJsibliMaHa, ¢
MaKPOCKOITMIECKUMU TPAHUIHBIMI YCIOBUSAME. JlOKa3aHbBI CyIIIeCTBOBAHUE U €IMHCTBEHHOCTD
pelenust CMeNranHoil 3aja4un Jijisi OJHOMEPHON HeJMHENHO HeCTAllMOHAPHON CUCTEMBI ypaB-
Henuit BosbIiMana B IePBOM U TPEThHEM HMPUOJINKEHUSIX [IPU MAKPOCKOIMIECKUX TPAHITTHBIX
YCJIOBUSIX B IIPOCTPAHCTBE (PYHKIUI, HEIPEPHIBHBIX 110 BPEMEHN W CYMMHUPYEMBIX B KBaJIpaTe
O IPOCTPAHCTBEHHON ITEPEMEHHON.

Kirouesnre ciioBa. CucreMa MOMEHTHBIX ypaBHeHUN BoJibIiMaHa, MEKPOCKOIINYIECKOE I'Pa-
HUYHOE ycyioBue Makcsesuia, MaKPOCKOIINYEeCKOEe IPAHUYIHOE YCIOBUE.
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Abstract. The paper is devoted to problems of solvability of nonlinear heat conduction problem in a
degenerating non-rectangular domain in Sobolev classes, the degeneration point of which located at the
origin. By using methods of a priori estimates and Faedo-Galerkin method, we prove theorems on the
existence and uniqueness of the solution for the boundary value problem under consideration, and also
for the one-dimensional boundary problem we prove its regularity with increasing smoothness of given
functions. We also obtained further development of these results for the multidimensional version (in
a multidimensional cone with a degeneration point at the vertex of the cone) of the boundary value
problems under consideration. Here it have also been shown the existence and uniqueness, but of a

weaker solution than in one-dimensional case.

Keywords. Second-order parabolic equations, nonlinear parabolic equations.

1 Introduction

The range of application of boundary value problems for parabolic equations in a domain
with a boundary that changes over time is quite wide. Such problems arise in the study
of thermal processes in electrical contacts [1], the processes of ecology and medicine [2], in
solving some problems of hydromechanics [3], thermomechanics in thermal shock [4] and so
on.

Extensive literature is devoted to the study of the solvability of linear and nonlinear
equations in cylindrical domains. However, as for nonlinear boundary value problems in
degenerating non-cylindrical domains, they have been studied relatively little.
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In the works [5] and [6], the solvability of boundary value problems for Burgers equation
in the non-rectangular domain was investigated. In the first work [5], it is required that the
domain (non-degenerated domain) can be transformed into a rectangular domain by regular
replacement of (independent) variables; in the second work [6], this requirement is excluded
(the domain of independent variables degenerates at the initial moment of time). On the
basis of the results of the work [7] in Sobolev spaces, the existence and uniqueness of the
regular solution of the considered boundary problems are established by the methods of a
Faedo-Galerkin and a priori estimates.

In [8] and [9] we show that homogeneous boundary value problems for one nonlinear
equation and Burgers equation in the (degenerating) angular domain along with the zero
solution have non-zero solutions. In [10] we have studied various cases of inhomogeneity at
the boundary. In these cases, it is shown that for the corresponding boundary value problems
there are both unique solvability and non-unique solvability.

In this paper, in Sobolev classes we study the solvability of a nonlinear equation with
homogeneous Dirichlet boundary conditions in a degenerating non-rectangular domain rep-
resented by a triangle, one of the corners of which is located at the origin and is a point of
degeneracy. In Section 1, we give a statement of the boundary value problem under study,
which in Section 2 is transformed by one-to-one nonlinear substitution for an unknown func-
tion to a linear boundary value problem in a degenerating triangular domain. In Section
3, for the linear boundary value problem we collate a family of boundary value problems in
non-degenerated quadrangular domains represented by the corresponding trapezoids. Here,
this family of boundary-value problems is transformed by the replacement of independent
variables into the corresponding family of boundary-value problems in rectangular domains,
and also here a number of theorems are formulated on their unique solvability. In Section 4,
a priori estimates for the solution of boundary value problems in trapezoids are established.
In the same Section, the main results of the work are formulated in the form of two theorems
for linear and initial nonlinear boundary value problems in a degenerating triangular domain.
The proofs of these theorems are given in Sections 5 and 6.

These results in Sections 7-11 are further developed for a multidimensional version of the
boundary value of problems under consideration. Here it have also been shown the existence
and uniqueness, but of a weaker solution than in the previous sections. It is not yet possible
to show the regularity of the weak solution. The work concludes with a brief conclusion.

1 Statement of the boundary value problem

Let Qu, = {x,t1| 0 <z < t1, 0 < t; < Ty < oo} be a triangular domain, one of the
vertices of which is located at the origin, and also let €2, be a section of the domain @,
for a fixed time variable ¢; € (0,77). In the domain Q,¢, we consider the following boundary
value problem:

Onu —vOZu+ (Opu)* = f, (v>0), (1)
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U(%tl)’x:() = O) U(Jl,tl)’x:tl = 07 (2)

where

f € LOO(Q:Etl)? f > 0. (3)

In this paper, we study the question of the existence and uniqueness of a solution for
boundary value problem (1)—(3) in Sobolev space (throughout the work, the space designa-
tions correspond to those accepted in the book [11]):

u € Hg’l(Qxh) = LQ(OaTl; H2(Oa tl) N H&(Ovtl)) N Hl(OaTl; LQ(Ovtl))° (4)

2 Converting (1)—(3) to a linear boundary value problem

We transform (1)—(3) to a linear boundary value problem for an unknown function
w(zx,t1). Using the following one-to-one transformation:

w(z, t1) =exp{—u/v}—1, u=—-vin(w+1), (5)
we obtain
o w — vd*w + fow = —f,, (6)
w(@,t1)|z=0 = 0, w(z,t1)]e=t, =0, (7)
fr=1/v € Los(Qat,), f1 = 0. (8)

3 On a family of auxiliary boundary value problems in quadrangular domains
(in the form of trapezoids)

For problem (6)—(8), we set a family of the boundary value problems, each of which is
considered in the domain representing by the corresponding trapezoid.

So,let n e N“={n e N:n>ny,1/n <T1}, QY ={z,t1: 0<x<t,1/n<t <
T} < oo} be a trapezoid, and let 2,4, be a section at fixed t; € (1/n,T1). Note that at the
point ¢; = 1/n the domain @7, no longer degenerates into a point, moreover, between the
original domain Q¢ and domains Q}, the strict inclusions Q7 C Qggj Lo ... C Quy take
place and, obviously, lim Q% = Qui,-

n—oo

In the non-degenerating domain Q7 (for each finite n € N*) we consider the following

boundary value problem:

8tlwn - Vagwn + fu,nwn = _fu,na (9)
Wy (2, 11)|o=0 = 0, wy(x,t1)]o=t, =0, wn(xatl)‘tlzl/n =0, (10)
fzz,nEfn/VeLoo( Zt1)> fzz,nZO- (11)
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We want to transform boundary value problem (9)—(11) so that it would be set in a rect-
angular domain. For this purpose we will make the transformation of independent variables:
we pass from the variables {z, 1} to variables {y,¢}. We have

x
T = t1 = s yYy=—,t=n——;
’I'L—t7 1 n—t’y tl’ t17

Qyt = {y,t: 0 <y <1, 0 <t < T} is arectangular domain, and 2 is a section of the
rectangle @y, for any fixed t € [0, 7],

1
tlzl/n@t:O, ti=Tr<t=T=n——.
Ty
Since
- Y 1 ~ Y 1
2w, (L, —— t) = = 12
wn(y’ ) Wn, (n—t’n—t)’ fl/,n(ya ) fl/,n <n—t’n—t>’ ( )
then for the derivative with respect to ¢; of function wy(z,t1) (12) we obtain
ow,  O0wn(y,t) 9 O0Wy(y,t)
= —1)2 = Dy )y
ot 5 (1) oy by

Now we find the derivative of function wy,(z,t1) (12) with respect to the variable x :

ow, %(n _p 5%w,, B 0%, (n— t)2
or Oy To0x2 Oy? '

We write down boundary value problem (9)—(11) in the domain QJ;:

- - Y - 1 s 1 ~
Oy, — Vagwn - maywn + mfu,nw = —mfu,m (13)
Wn(y,t) =0, {y,t} € Xf = {y, t: y e {0} U{1}, 0 <t <T}, (14)
Wn(y,0) =0, yeQ={y: 0<y<1, t=0} (15)

Instead of (13)—(15) in the domain @y, following [5] and [6], we will consider a more
general boundary value problem:

atuN)n - Vagwn - 7n(y7 t)aywn + an(t)fll,nmn = _Bn(t)]?y,m (V > 0)7 (16)

wn(yat”y:O = Oa ﬁ)n(y»t”y:l = 0> wn(y,t)|t:0 = 07 (17)
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where the given functions au,(t), B, (t), Yn(y,t) for any fixed number n € N* satisfy the
following conditions

a1y < an(t) < aop, /8171 < /Bn(t) < /82717 Vte [O,T],
(18)
(Y O] < Yins [0y (¥ )] <vins V{y, t} € Qp,

with given positive constants a1,, @2n, Bin, Bon, Vin-

The following theorem is valid.

Theorem 1. Suppose we have a fived number n € N*. Then, if fun € Lool ) and

an(t), Bu(t), m(y,t) satisfy conditions (18), then boundary value problem (16)—(17) has a
unique solution

Wy € Ho'' (Q1y) = Lo(0,T; HA(0,1) N Hg(0,1)) N H(0, T L(0, 1)), (19)

which satisfies the following estimate:
lall 21 gn,y < K (I fonllziayv) » moreover, K(0,)=o. (20)

The proof of Theorem 1 can be obtained by Faedo-Galerkin method (for example, as
in [11]).

Since coefficients of equations (13)-(15) meet conditions (18), then for boundary value
problem (13)—(15) from Theorem 1 we obtain, as a corollary, the following theorem.

Theorem 2. Suppose we have a fized number n € N*. Then, if fl,,n € Loof Zt), then bound-

ary value problem (13)—(15) has a unique solution Wy, € Hg’l( ) (19), which satisfies the
following estimate:

Hw"HHg’l(Qgt) <K (Hfu,nHLoo(Qgt),u), moreover, K(0,v) = 0. (21)

We give the correspondence of functional spaces in terms of independent variables {y,t} €
yr and {z,t1} € Qy, -

Fun € Lool yt) = Loo(0,T Loo(0,1)) < fun € Loo(Qz,) = Loo(1/n, T1; Lo (0, 1)), (22)

w(y,t) € HY' QM) = La(0,T5 H2(0,1) N HY(0,1)) N H'(0,T; L2(0,1)) <

s w(z,t) € HY' Q) = Lo(1/n, Ty; H2(0,11) N HE(0,t1)) N HY(1/n, Ty; Ly(0, 1)), (23)

Further, taking into account the correspondence of spaces (22)—(23), in accordance with
Theorem 2 we can formulate the following statement:
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Theorem 3. Suppose we have a fized number n € N*. Then, if f,n € Loo(Ql,) (22), then

n

boundary value problem (9)—(11) has a unique solution w, € Hg’l( w,) (23) that satisfies
the following estimate

lonll 32 gp, < K (Imlliccaz,) )
< KO (Hfl/HLoo(tal)v V) , moreover, K(07 1/) = KO(Ov V) =0. (24)
The proof of this theorem will be given in the next section.

4 A priori estimates for a solution of problem (9)—(11). Formulation of the
main result for one-dimensional problem

Lemma 1. There exists a positive constant K independent of n, such that for all t; €
(1/n,T1] the following inequality takes place:

t1
et y0r + [ 100n ) 0 mdn < Ko (1At i@ v) - (25)
1/n
Proof. Multiplying equation (9) by wy(z,t1) in the space L2(0,¢1), we obtain
§E‘|wn($7 tl) HL2(07t1) + VHaan({E, tl)”Lg(O,tl)
< o (@ ) L 0,00 10n (@, E) 1y 0,01) + 1o (2, 80) 2 0,00) l0m (2 £0) 4 0,0

Now by using Gronwall’s inequality and the following obvious inequality

fonllza@r,) < 1ullLa(@ary)s (26)
we get required statement of Lemma 1. Note that the equality K1(0,r) = 0 holds.

Lemma 2. For a positive constant Ko independent of n, for all t; € (1/n,T1] the following
inequality takes place:

t1
JOstn(e, ) oy + [ 102 e < Ko (Il laai@uiv) (21

1/n
Proof. Multiplying equation (9) by —d2w,(z,t1) in the space L(0,t1), we obtain
1 d

§Th||3an($, tl)H%Q(o,tl) + V|| 02 wn (x, tl)”%Q(o,tl)
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< fom (@, ) L 0 [wn (@, 80| £50.00) 105w0n (2, 81) | 2y 0,01)

+ fm (@ ) L 00 03w (@, 11) || 24 (0,01

Hence, by using Gronwall’s inequality, Cauchy e-inequality and (26), we get required
statement of Lemma2. Note that the equality K2(0,r) = 0 holds.

Lemma 3. For a positive constant K3 independent of n, for all t1 € (1/n,T}] the following
inequality takes place:

19010 (2, 10) 2, ) < K (11 1) e @) (28)

Proof. The statement of Lemma 3 follows from Lemmas 1-2 and equation (9), moreover, the
equality K3(0,v) = 0 holds.

Thus, from Lemmas 1-3 we directly obtain the validity of the statement of Theorem 3 and
a priori estimate (24).

Now we can formulate the following two theorems:

Theorem 4. Let f,(x,t1) € Loo(0,T1; Loo(0,t1)). Then problem (6)—(8) has a unique solu-
tion w(x,t1) € Hg’l(thl).

Theorem 5 (Main result). Let f(x,t1) € Loo(0,71; Loo(0,t1)). Then problem (1)—(3) has a
. , 2,1
unique solution u(x,t1) € Hy (Qut,)-

Proofs of Theorems 4-5 will be given in the following two sections.

5 Proof of Theorem 4

Let wy,(z,t1) be a solution to boundary value problem (9)—(11), which exists and is unique
according to Theorem 3 on the corresponding trapezoid Q};, (n € N*) and belongs to the
space Hg’l( %,)- Denote by {@(x,tl),};(x,tl)} the extensions of the mentioned solution
wy(z,t1) and the given function f,(x,t1) by zeros to the entire triangular domain Q. It
is obvious that a priori estimate (24) will remain true for extensions {@(w,tl),ﬁ(x,tl)}.
Thus, we obtain a bounded sequence of functions {w, (x, t1) }nen+, from which we can extract

weakly convergent subsequence (we preserve the notation of the index n for the subsequence):
Wn(x,t1) — 2(z,t1) weakly in  Hy™ (Qut, )-

Hence, in the integral identity (for any 6(z,t1) € L2(Qq1,))

Ty t1

[ [ [ m) = w02, m) + Fanar )T, 72) + Farn 7))y =,
0 0
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we can pass to the limit as n — oo. For any 6(z,t1) € La(Qut, ) we have

Ty ty

// [8le(x,7'1) —vd22(x, 1) + folx,7)2(z, 1) + f,,(x,Tl)] O(x,m)dxdr = 0.
0 0

This means that the limit function z(z, 1) satisfies equation (6) in the space La(Qu,) and
boundary condition (24).

Thus, Theorem 4 is completely proved.

6 Proof of Theorem 5

First of all, we note that by virtue of condition (8) the weak maximum principle holds
for the solution of boundary value problem (6)—(7) ( [12], chapter III, p. 2: Corollary), i.e.
we will have

w(z,t1) <0, {z,t1} € Que, Uy, . (29)

From (29) according to transformation (5) we will also have
—1 <w(z,t1), u(x,ty) >0, {z,t1} € Qut, U Q. (30)
Let us prove the following lemma.

Lemma 4. The following estimate holds
||u||H2,1(QM1) <4 (Hw||H2,1(QM1), 1/), moreover , C1(0,v) = 0. (31)

Proof. From relation (5) we directly have

[l £2(Qury) € VT1NOul 1y(Qury) < VVT1020] 15(Quy ) (32)
102t L5(Qur,) < VIIO2W|| Ly(Quy ) (33)
Hatlu”Lz(tal) < VHatl,wHLz(tal)’ (34)

and since, according to the statement of Theorem4: w(x,t;) € Hg’l(le), from this we
additionally obtain the estimate

10ztllLy0,61) < VIOzwllLyo0), Yia € (0,T1). (35)

It remains for us to estimate the second derivative with respect to the variable x from u(z,¢;).
To do this, we multiply equation (1) by —d?u(z,t1) in the space Ly(0,t1). We will have

1d

2 2
3 ar; 192u(@, ) [Ly0) + v 020 ) 0.,
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< ‘([8xu(:c,t1)]2,8§u(x,t1))‘ + ‘(f(x,tl),agu(x,tl))’

2 2 v
< ;Hf(x7t1)”%2(0,t1) + ;H[a:vu(afatl)]QH%Q(o,tl) + §H8§u(aﬁ,t1)HQL2(0¢1),
or

d 2 2
at [0zu(z, t1)[|750,00) + ¥ Haﬁu(wvtl)HLQ(o,tl)

4
< = LIP3, 000y + 100l )P0 - (36)

Taking into account (35) and the embedding Hg’l(thl) C Lo(0,Ty; H2(0,t1) N HE(0,11)), we
derive the following inequality

Il )1 0.0) = 100l 2,4 0,00) < VM 1000(, 17 0,0y < Kallw(, 1)z (37)

thl ) ’

Thus, from (32)—(37) we obtain the required estimate (31). Lemma 4 is completely proved.

Finally, Lemma 4 gives us for boundary value problem (1)—(3) the uniqueness and the fact
that its solution u(z,¢1) belongs to the space Hg 1 (Qq1,) under the conditions of Theorem 5.
This lemma also gives us the completion of the proof of Theorem 5.

7 Statement of multidimensional boundary value problem

Let ¢ = {x1, ..., tm}, Qut, = {z,t1] |z| <t1, 0 <t1 <T1 < oo} be a cone with the vertex
at the origin and let €, be a section of the cone @y, for the fixed time variable t; € (0,7}).
In the cone @+, we consider the following boundary value problem:

Onu—vAu+ |Vul2 = f, (v >0), (38)
U(LL', t1)||m|:t1 =0, (39)

where
f € Loo(th1)7 f 2 0. (40)

In this work, we study the question of the existence and uniqueness of a solution of
boundary value problem (38)—(40) in Sobolev space:

u e Hy (Qut,) = La(0, T1; HY Q) 0 HY0, T1; HH Q). (41)

8 Converting (38)—(40) to linear boundary value problem

We transform (38)—(40) to a linear boundary value problem for an unknown function
w(z,t1). Using the following one-to-one transformation:

w(z,t1) =exp{—u/v} -1, u=—vin(w+1), (42)
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we obtain
atlw_VAw+fuw:_fua (43)
w(xﬂtl)‘\ﬂ:tl =0, (44)
fl/Ef/VGLOO(th)v fl/ZO (45)

9 On a family of auxiliary boundary value problems in domains represented
by truncated cones

To problem (43)—(45), we will set a family of boundary value problems, each of which is
considered in the domain representing the corresponding truncated cone.

So,let n € N*={n e N:n>n;,1/n <Ti}, Q, = {z,t1: |z] <1, 1/n <t <
T} < oo} be a cone, and let €, be a section at fixed ¢; € (1/n,T1). Note that at the point
t1 = 1/n the domain Q7,, no longer degenerates into a point, moreover, between the original
domain Qg and domains QJ;, the strict inclusions Ql} C Q;‘gj 1 ¢ ... C Qu, take place
and, obviously, lim Q7 = Q.

n—oo

In the non-degenerating domain Q7,, (for each finite n € N*) we consider the following

boundary value problem:

8t1wn — vAw, + fz/,nwn = _fu,na (46)
wn(x7t1)||m|=t1 = 07 wn(:r7t1)|t1:1/n = 07 (47)
Jon = fu/V € Loo(Qhy,), fon > 0. (48)

We want to transform boundary value problem (46)—(48), so that it would be set in
a cylindrical domain. For this purpose we will make the transformation of independent
variables: we pass from the variables {x,¢;} to variables {y = y1, ..., Ym, t}. We have
Yi 1 X;

7t: ) :77t:n_75
n—t T n—¢ YTy t

€Ty =
vt =1y, t: |yl <1, 0 <t <Th}is acylindrical domain, and €2 is a section of the cylinder
ye for any fixed t € [0, 7],

1
t1:1/n<:>t:(), tlleﬁt:T:n—?.
1

Since

n—t'n—t n—t'n—t

- Y 1 = Y 1
wn(ya t) = Wn, < >7 fl/,n(ya t) = fl/,n < )7 (49)
then for the derivative with respect to ¢; of function w,(x,t1) (49) we obtain
Owy,  0wn(y,t) b e DMy (y, 1)
= —1)2 =S gy .
ot 5 () > By DY

i=1
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Now we find the derivative of function wy,(x,t1) (49) with respect to the variable x; :

w, 0%,
(n—1), 8:5% = 8%2 (n— t)2.

Owy,  Owy,
or; Oy

We write down boundary value problem (46)-(48) in the domain Qj;:

N - “ Yi - 1 ~ 1 ~
n - A n - — i n T \9Jymn = — 7 o Jymn
O, — VAW ;n_tﬁyzw + (n—t)Qf’ w (n—t)Qf’ (50)
wn(y,t) =0, {y,t} € Xy ={y, t: Jy| =1, 0 <t <T}, (51)
Wn(y,0) =0, y€ Q={y: [y[ <1} (52)

Instead of (50)-(52) in the domain @y, following [5] and [6], we will consider a more general
boundary value problem:

Oy, — VAW, — Z’Yin(yi, t)ayiwn + Oln(t)fu,nﬁ}n = _/Bn(t)fu,na (V > 0)7 (53)
=1
Wi (Y, t)]jyj=1 = 0,, Wn(y,t)|t=0 =0, (54)

where the given continuous functions o, (t), Bn(t), Vin(y,t) satisfy the following conditions
for any fixed number n € N*

a1y < an(t) < aop, Bln < ﬂn(t) < /82717 Vte [O,T],
(55)
h/ln(y7t)| < Tn, \(%Pym(y,t)] < Tin, V{y,t} € QZH

with given positive constants a1y, aon, Bin, 52ns Vin-

The following theorem is valid.

Theorem 6. Suppose we have a fixed number n € N*. Then, if fym € Loo(Qy) and
an(t), Bu(t), vin(y,t) satisfy conditions (55), then boundary value problem (53)—(54) has a
unique solution

Wy € Hy(QMy) = Lo(0,T; Hy () N H'(0,T; H (), (56)

which satisfies the following estimate:

HwnHHg*o(Qyt) <K (wanHLoo(Qyt)a’/> , moreover, K(0,v)=0. (57)
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The proof of Theorem6 can be obtained by Faedo-Galerkin method (for example, as
in [11]).

Since coefficients of equations (50)—(52) meet conditions (55), then for boundary value
problem (50)—(52) from Theorem 6 we obtain, as a corollary, the following theorem.

Theorem 7. Suppose we have a fized number n € N*. Then, if fl,,n € Lo Zt), then bound-

ary value problem (50)—(52) has a unique solution Wy, € Hol’o( ) (56), which satisfies the
following estimate:

Il 00, < K (Munlliai@uv), moreover, K(0,v) =0, (58)

We give the correspondence of functional spaces in terms of the independent variables
{y,t} € Qy and {z,t1} € Qy, -

fu,n € Loo( ;Lt) = Loo(0,T5 Loo(R2) & fun € Loo Ztl) = Loo(1/n,T1; Loo(S4,)), (59)
w(y,t) € Hy"(QU) = Lo(0, T; HY () N HY0,T; H1(Q)) &

s w(z,t) € Hy'(Q%,) = La(1/n, Ty; HY () N H (1/n, Tr; H (). (60)

Further, taking into account the correspondence of spaces (59)—(60), in accordance with
Theorem 7 we can formulate the following statement:

Theorem 8. Suppose we have a fized number n € N*. Then, if f,n € Loo(Ql,) (59), then

boundary value problem (46)—(48) has a unique solution w, € Hé’o( w,) (60) that satisfies
the following estimate:

lnllogn, » < K (Iallziaz, o)

< Kp <||fVHLoo(ta1)’l/)7 moreover, K(0,v)= Ky(0,v)=0. (61)
The proof of this theorem will be given in the next section.

10 A priori estimates for the solution of problem (46)—(48). Formulation of the
main result for the multidimensional problem

Lemma 5. There exists a positive constant Ky independent of n, such that for all t1 €
(1/n,T1] the following inequality takes place:

t1
Hwn(ﬂ?vtl)H%Q(Qtl) + / |’an($,Tl)H%2(QT1)dTl < K (Hfu(l’atl)HLoo(Qm)vV)‘ (62)
1/n
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Proof. Multiplying equation (46) by wy(z,?1) in the space La(£2,), we obtain

1d

5%”“’”(%“)”%2(9%) + || Vwg(z, 1) 7,0,

< (@ )| o) lwn (@, 0Ty 0, ) + 1 fom(@, ) L ) llwn (@, 01) ]2, (00, ) -

Now by using Gronwall’s inequality and the following obvious inequality

[fonllze@r,) < 1fllLw@an)s (63)

we get the required statement of Lemma 5. Note that the equality K1(0,v) = 0 holds.

From the linear continuity of the Laplace operator A : H}(4,) — H~Y(Qy,) it follows
the validity of the following lemma.

Lemma 6. For a positive constant Ky independent of n, for all t; € (1/n,T1] the following
inequality takes place:

t1
/||Awn(m,7-1)|]§{_1(ﬂq)dnSKQ (||fy(a:,t1)HLoo(tal),1/), moreover, K3(0,v) = 0. (64)
1/n

Lemma 7. For a positive constant K3 independent of n, for all t1 € (1/n,T}] the following
inequality takes place:

ty
[ 10 wn sy < Ko (ol on@unyev) - (65)
1/n

Proof. The statement of Lemma 7 follows from Lemmas5-6 and equation (46), moreover,
the equality K3(0,v) = 0 holds.

Thus, from Lemmas 5-7 we directly obtain the validity of the statement of Theorem 8
and a priori estimate (61).

Now we can formulate the following two theorems:

Theorem 9. Let f,(x,t1) € Loo(0,71; Loo(Qy)). Then problem (43)—(45) has a unique
solution w(x,t1) € Hé’O(thl).

Theorem 10 (Main result). Let f(z,t1) € Loo(0,T1; Loo(2,)). Then problem (38)—(40) has
. . 1,0
a unique solution u(x,t1) € Hy (Qut,)-

KAZAKH MATHEMATICAL JOURNAL, 20:1 (2020) 67-83



80 M.T. Jenaliyev, K.B. Imanberdiyev, A.S. Kasymbekova, M.G. Yergaliyev

Proofs of Theorems 9-10 will be given in the following two sections.

11 Proof of Theorem 9

Let wy(z,t1) be a solution to boundary value problem (46)-(48), which exists and is
unique according to Theorem 8 at the corresponding truncated cone @7, (n € N*) and

belongs to the space Hé’o( . ). Denote by {wp(z, tl),};(x, t1)} the extensions of the men-

xt1
tioned solution wy,(z,t;) and the given function f,(z,t1) by zeros to the entire cone Qg .

It is obvious that a priori estimate (61) will remain true for extensions {wy,(x, 1), fn(z,t1)}.
Thus, we obtain a bounded sequence of functions {wy,(z,t1) }nen+, from which we can extract
weakly convergent subsequence (we preserve the notation of the index n for the subsequence):

Wn(x,t1) = 2(z,t1) weakly in Hy*(Qur, )-
Hence, in the integral identity (for any 6(z,t1) € L2(0, T1; H} (Q4,)))

T t1
[ [ [ m) = vATa (e, m) + fanlire )T, 7) + Fanlir70)] 0 )y =0,
0 0

we can pass to the limit as n — oo. For any 0(x,t1) € La(0,T3; Hi (Q4,)) we have

T &
//[8712(33,7'1) —vAz(z, ) + fu(x,m)z(x,71) + fu(x,71)]0(x, 71)dzdr = 0.
0 0

This means that the limit function z(x,t;) satisfies equation (43) in the space
L2(0,T1; H-(€Q4,)) and boundary condition (44). Thus, Theorem 9 is completely proved.

12 Proof of Theorem 10

First of all, we note that by virtue of condition (45) the weak maximum principle holds
for a solution of boundary value problem (43)-(44) ([12], chapter III, p. 2: Corollary), i.e.

we will have
w(z,t1) <0, {x,t1} € Qut, UQy,. (66)

From (66) according to transformation (42) we will also have
—1 <w(x,t1), u(z,t1) >0, {x,t1} € Quiy, Uy, . (67)
Let us prove the following lemma.

Lemma 8. The following estimate holds

||uHHé,o(th1) < (Hw”Hol’O(Qa:tl)’ 1/), moreover , C1(0,v) = 0. (68)
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Proof. From relation (42) we directly have

lulla(@uiy) < VIUIVUll Ly (Qury) < vV TLIVW 1y(Quty) (69)
HVUHLQ(tal) < VvaHLQ(tal)’ (70)
104, ull Ly0.10:5-1(92,)) S VIO Wl Ly0. 1051 (02,))» (71)

and according to inequality (64) from Lemma6 we additionally obtain estimate
[Aul[g-1(0,,) S VIAw|g-1(9,,), V1 € (0,T1). (72)
Finally, from equation (38) we will directly have that
(Vu(z,t1))* bounded in Ly(0,T1; H (). (73)

Thus, from (69)—(73) we obtain required estimate (68). Lemma8 is completely proved.

Finally, Lemma8 gives us for boundary value problem (38)—(40) the uniqueness and the
fact that its solution u(z,t1) belongs to the space H& Y(Qq¢,) under the conditions of Theo-
rem 10. This lemma also gives us the completion of the proof of Theorem 10.

Conclusion

In this paper, we have established theorems on solvability of nonlinear heat conduction
problem in a degenerating domain in Sobolev classes, the degeneracy point of which located
at the origin.

The results of the work for the one-dimensional version can be generalized to the case
when we have the domain of independent variables Qu:, = {z,t1 : 0 < z < ¢(t1), 0 <
t1 < Ty < oo} represented by curvilinear triangle moving boundary of which can change
according to the rule z = ¢(t1), t; € [0,71], and the condition ¢(0) = 0 holds. Moreover,
for the function ¢(t1) it is required to meet certain natural conditions. For example, the
function (t1) must satisfy the following two conditions: 1° in a sufficiently short period of
time (0,%7) the function ¢(¢1) could have the representation ¢(¢;) = pt1, where p would be
a given positive constant (in our work it was equal to one); 2° on the interval [t},T}] the
function ¢(t1) would be continuously differentiable and possess the property of monotonicity,
providing one-to-one transformation from the independent variables {x,¢; } to variables {y,t}.

Similar considerations take place for boundary value problems in the multidimensional
case. Indeed, in the multidimensional case, when we have the domain of independent variables
Qut; = {x =21, ..., m, t1: x| < p(t1), 0 < t; < Ty < oo} represented by ”curvilinear cone”.
Moreover, the "moving” lateral surface of this domain for each fixed ¢; can be changed
according to the rule |z| = /2% + ... + 22, = p(t1), t1 € [0,71], and the condition ¢(0) =0
holds. Moreover, for the function ¢(t1) it is required to meet certain conditions. For example,
the function ¢(t1) must satisfy the following two conditions: 1% in a sufficiently short period
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of time (0,¢}) the function ¢(¢;) could have the representation ¢(t1) = pt;, where p would
be a given positive constant (in our work it was equal to one); 2° on the interval [}, T3] the
function ¢(t1) would be continuously differentiable and possess the property of monotonicity,
providing one-to-one transformation of each circular section of the ”curvilinear cone” in the
independent variables {x,¢;} to the corresponding circular section of the cylinder in variables

{y, t}.

References

[1] Kim E.I., Omel’chenko V.T., Kharin S.N. Mathematical models of thermal processes in electrical
contacts, Academy of Sciences of the Kazakh SSR, Alma-ata, 1977.

[2] Mitropol’ski Yu.A., Berezovskii A.A., Plotnizkii T.A. Problems with free boundaries for a non-
linear evolutioonary equation in problems of metallurgy, medicine, ecology, Ukr. math. jour., 44:1
(1992), 67-75. https://doi.org/10.1007/BF01062627.

[3] Verigin N.N. On a class of hydromechanical problems for domains with movable boundaries,
Fluid dynamics with free boundaries, 46 (1980), 23-32.

[4] Kartashov E.M. The problem of heat stroke in a domain with a moving boundary based on new
integral relations, News of the Russian Academy of Sciences. Energetics, 4 (1997), 122-137.

[5] Benia Y., Sadallah B.-K. Ezistence of solutions to Burgers equations in domains that can be
transformed into rectangles, Electron. J. Diff. Equ., 157 (2016), 1-13.

[6] Benia Y., Sadallah B.-K. Ezistence of solutions to Burgers equations in a non-parabolic domain,
Electron. J. Diff. Equ., 20 (2018), 1-13.

[7] Sadallah B.-K. Etude d’un probleme 2m-parabolique dans des domaines plan non rectangulaires,
Boll. U. M. L, (6), 2-B (1983), 51-112.

[8] Amangaliyeva M.M., Jenaliyev M.T., Ramazanov M.I. On the existence of non-trivial solution
to homogeneous Burgers equation in a corner domain, Abstracts of Int. Conf. ”Mathematics in the
Modern World”, dedicated 60th Anniversary Sobolev Institute of Mathematics, August 14-19, 2017,
Novosibirsk, Russia, 187.

[9] Jenaliyev M., Ramazanov M., Yergaliyev M. On linear and nonlinear heat equations in degen-
erating domains, AIP Conference Proceedings, 1910 (2017), 040001-1-040001-10.
https://doi.org/10.1063/1.5013968.

[10] Amangaliyeva M.M., Jenaliyev M.T., Kosmakova M.T., Ramazanov M.I. On the solvability of
nonhomogeneous boundary value problem for the Burgers equation in the angular domain and related
integral equations, Springer Proceedings in Mathematics and Statistics, 216 (2017), 123-141.
https://doi.org/10.1007/978-3-319-67053-9_12.

[11] Lions J.-L., Magenes E. Problemes aux limites non homogenes et applications, Vol. 1, Dunod,
Paris, 1968.

[12] Landis E.M. Second order equations of elliptic and parabolic types, ”Science”, PHISMATLIT,
Moscow, 1971.

KAZAKH MATHEMATICAL JOURNAL, 20:1 (2020) 67-83



On solvability of one nonlinear boundary value... 83

Kuenomnes M.T., Umantbepaues K.B., KaceimbekoBa A.C., Eprammes M.F'. ©3I'E-
HIEJIETIH OBJIBICTAPOAYTBI 2KBIJIVOTKI3I'IITIK TEHAEYI YIIIH BIP ChI3bI-
KTBhIK EMEC IHNEKAPAJIBIK ECEIITIH, ITEITIMAIJIIIT TYPAJIBI

2KymbIc e3reresieHy HYKTECI KOOpAMHATAJAD OAaChIHIA OPHAJIACKAH ©3TEIIeJIEHETIH 00-
JIBICTAPJATDl YKBUIYOTKIBMIMITIK TeHIeyiHe KOUbLITaH 0ip CBHI3BIKTHIK, €MeC MIEKAPAJIBIK, eCell-
1if, CoboJieB KJtacTapbIHIAFbl MIEMTiMIIK Moceneepine apuaiaran. ®aemo-lamepkun men
aIpuoPJIbI Oarayiaysiap 9JicTepiH malinanany apKbLIbl KAPACTHIPBLILIIT OThIPFAH MEKAPAJIBIK,
€CeITiH meliMiaig 6ap 60Iybl MEH KaJIFBI3IBIFLI TyPaJIbl TeOpeMaJsap, opi, oFaH Koca, OipeJ-
IeM/JIi IeKapaJbIK, ecell YIniH 6epiired pyHKIUIIAPIbIH TericTirinin ecyi Ke3inmeri peryasp-
JIBIFBT Jpsesaere . COHbBIMEH KaTap Oy HOTHKEeIEPIiH KaPACTHIPBLIBIT OTBIPTAH TTEKAPAJIBIK,
ecenTepiiH, KomemeM Il (e3reesieHy HyKTeci KOHYC TebeciH/ie OpHAIaCKaH KOIOJIIeM Il KO-
HyCTarbl) Kar/afibl yIIiH opi Kapaii JaMbITBLIYbI aJblHFaH. By xKepjie Tek Gipesimemii Kar-
JIafiMeH caJIbICThIPFaH/a OJICI3ipeK IienriMHiH rana 6ap 00/Iybl MEH KAJFBI3JIBIFBI KOPCETLIJI.

Kinrrix cesnep. Exinmn perti mapabosablK TeHJIEY/Iep, ChI3BIKTHIK eMeC MMapadoIaIbIK,
TeHJIEeyJIep.

Jxenanues M. T., Uman6epnnes K.B., Kaceimbekosa A.C., Eprasmes M.I". O PA3SPEIILN-
MOCTU OJHON HEJMHENHON 'PAHUYHON 3AJAYN /14 YPABHEHUS TEII-
JIOIIPOBOJHOCTH B BHIPOYKJIAIOIINXCS OBJIACTAX

Pabora mocssiena BorpocaM pa3peruMOCTH B CODOJIEBCKUX KJIaccax OAHON HeJImHeiRHOi
3a1a91 TEILJIOIPOBOIHOCTH B BBIPOXKIAIOIINXCST 0DJIACTSAX, TOYKA BBIPOXKIEHMUSI KOTOPOH Ha-
xojuTcd B Hadaje KoopjauHat. C ucnosibzoBanuem meroyioB Pasmno-lansepkuna u anmpuopHbIx
OIICHOK JIOKa3bIBAIOTCA TCOPEMBI O CYIIIECTBOBAHUN U ¢IUHCTBCHHOCTH PEIICHUA pacCMaTpuBa-
€MOIf TPaHWMYHON 3a/1a4’, & TAKIKEe €r0 PEryJIdpHOCTb IIPU MOBBIECHUN TVIAJKOCTH 38/ JaHHBIX
yHKIIMI 11T OJJHOMEPHON IpaHUIHON 3a/iadu. TakKe MOJIydeHo JaJjibHelilnee pa3BUTHE ITUX
Pe3yJIbTATOB JIJIsi MHOIOMEPHOTO BapraHTa (B MHOIOMEPHOM KOHYCE C TOYKOl BBIPOXKJICHUS
HA BEpPINUHE KOHyCa) PAcCMaTPUBAEMbIX IPAHUYHBIX 33/1a4. 3/1eCh MOKA3aHbI CYIIEeCTBOBAHNIE
U eJMHCTBEHHOCTb, HO TOJIBKO 0oJiee ¢j1aboro perieHust, YeM B OJIHOMEPHOM CJIydae.

Kurogesnie cioBa. 1lapabosmyeckne ypaBHeHUsI BTOPOIO IOPsiJiKa, HeJUHeiHble napabo-
JITYECKNe YpaBHEHUS.
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Abstract. In this paper we consider a nonlocal boundary value problem for the Laplace operator in a
ball, which is a multidimensional generalisation of the Samarskii-lonkin problem. The well-posedness of

the problem is investigated, and an integral representation of the solution is obtained.

Keywords. Laplace operator, Poisson’s equation, Boundary value problem, Nonlocal boundary value

problem, Samarskii-lonkin problem

1 Introduction

It is well known that Dirichlet and Neumann boundary value problems play important
roles in the theory of harmonic functions [1]. In one-dimensional case, or when considering
the problem in a multidimensional parallelepiped, the main problems include also periodic
boundary value problems. In the works [2], [3], for the first time, a new class of boundary
value problems for the Poisson’s equation in a multidimensional ball 2 C R™ was introduced
(k=1,2):

The problem P.. Find a solution of the Poisson’s equation
—Au(z) = f(z), =€,
satisfying the following periodic boundary conditions
u(z) — (—DFu(z*) = 7(z), =€ dQy,

8u k au
—(x) + —1)F—
or () +(=1) or
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() = p(z), =€ dN.
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Here, 0€2 is a part of the sphere 0f2, for which z; > 0; each point x = (x1,x2,...,x,) €
is matched by its “opposite” point z* = (—z1, a2, ..., anxy,) € Q, where the indices o; €
{-1,1},j =2,...,n. Clearly, if z € 9Q, then z* € 9Q_.

These problems are analogous to the classical periodic boundary value problems. In [2],
[3], the well-posedness of these problems were investigated. Moreover, there, the authors
showed the existence and uniqueness of the solution to the problem P;, while the solution
of the problem P; is unique up to a constant term and exists if the necessary condition of
the well-posedness holds. The uniqueness and existence were shown by using the extremum
principle and Green’s function, respectively. In [3], the authors considered the problem P
in the two-dimensional case and showed the possibility of using the method of separation
of variables. Moreover, in this case, the self-adjointness of these problems and its spectral
properties were studied.

If we turn to the non-classical problems, then one of the most popular problems is the
Samarskii-lonkin problem, arisen in connection with the study of the processes occurring in
the plasma in the 70s of the last century by physicists (see e.g. [5], [6]). In [7], [8], an analog
of the Samarskii-Ionkin type boundary value problem for the Poisson’s equation in a disk was
considered. We also refer to [9]-{12] for the problems generalising the periodic problem Py. We
also note that nonlocal boundary value problems of periodic type were developed for the case
of problems with integro-differential boundary operators: for Poisson’s equation [13], [14]
and biharmonic equation [15], [16]. In [17], a nonlocal problem for the Laplace equation
generalising the periodic P, and Robin problems were considered.

In this paper we study a nonlocal boundary value problem for the Laplace operator in a
ball, which is a multidimensional generalisation of the Samarskii-Ionkin problem.

2 Statement of the problem

Let ©+ = (x1,x9,...,2,) € R™ be an arbitrary point of the unit ball Q@ = {z =
(z1,22,...,7,) € R* : |z| < 1} € R™ Let ax € {-1,1}. Then (az)®> = 1. De-
note z* = (—x1,q0x9,...,ay%y,), and IQy (02_) is a part of the sphere 912, for which
1 > 0(x1 < 0). We also denote a part of the sphere 0f, for which z; = 0, by 9.

Let us consider the following nonlocal boundary value problem for the Laplace operator
in the ball, which is a multidimensional generalisation of the Samarskii-lonkin problem.
The problem S,i. Find a function u(x) € C?*(2) N CH(Q\OQ) satisfying the Poisson’s
equation

—Au(z) = f(z), z€Q, (1)

and the following boundary conditions

u(z) —au (z*) = 7(x), x € 00y, (2)
o)~ 0% a*) = pla), @ € D0, (3)
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where f(x) € C5(Q), 7(z) € CY ¢[00 ], u(x) € C5[0Q4], 0 < & < 1, and « is a fived real
number. Here, 6% 18 a derivative with respect to the direction of the outer normal to 0S).

In the case when o« = —1, we obtain antiperiodic boundary problem, which was studied
earlier in the works [1]-[2]. We refer to [7]-[8] for the case @ = 0. The two-dimensional case
of the problem S,; was studied in [10]-[12].

3 Fredholm property of the problem S,

In this section we show that the problem S, is not even Noetherian when o = 1, that is,

the homogeneous problem S,

Au(z) =0, =€,
u(x) —u(z*) =0, =€y, (4)

Du(e) — 9 (a%) =0, =€,
has an infinite number of linearly independent solutions.

For this, let us introduce the auxiliary functions ¢(z) and s(z) as follows
c(x) = u(x) +u(z®), s(z)=u(z)—u(z").
Substituting the function s(x) in the homogeneous problem (4), we have
As(x) =0, €, s(z)=0, =€,

which means s(x) = 0 for all z € Q. This implies u(x) = u(x*) for all z € Q. Hence, we
obtain ¢(z) = 2u(x).

By the construction of the function ¢(x), it must have the symmetric property
c(z) = c(z”). (5)

So, this function automatically satisfies boundary conditions of (4).

Thus, the function ¢(x) is harmonic (Ac(z) = 0) satisfying the symmetric condition (5).
Since there are infinite number of such linearly independent harmonic functions, the problem
Sa1 is not even Noetherian when o = 1. Therefore, in this case the problem S,; is not
Fredholm.

Throughout this paper, we consider the Fredholm case of the problem S,1, that is, the
case a # 1.
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4 Uniqueness of the solution to the problem S,;

Theorem 1. Let oo # 1. Then the problem Sa1 has no more than one solution.

Proof. Suppose that there are two functions u (z) and ug(x) satisfying the conditions of the
problem S,1. We show that the function u(z) = wu;(x) — ua(z) is equal to zero. It is obvious
that the function u(z) is harmonic and satisfies the following homogeneous conditions

u(z) —au(z®) =0, =€ iy, (6)
gZ(m) - gZ(ﬁ) =0, z€d. (7)

Denote
v(x) = u(x) — u(z"). (8)

It is clear that v(z) is a harmonic function with the symmetric property
v(z) = —v(z*), = €. (9)
Hence, in view of the boundary condition (7) we get the following classical Neumann problem

Av(z) =0, =€ Q; gZ(x):Q x € 0.

Consequently, v = const.

Therefore, from (8) we obtain v = 0, x € Q. It implies that u(z) = u(z*), z € Q.
Moreover, we get u(x) — u(z*) = 0, z € 04, which, together with the boundary condition
(6), show that

u(z) =0, x €09, (10)

since @ # 1. By the uniqueness of the solution to the Dirichlet problem for the Laplace
equation, we have u(x) =0, x € Q, that is, u;(z) = ua(x).

Thus, we have completed the proof of Theorem 1. O

5 Construction of the adjoint problem to the problem S,;

Let us denote by W, the linear manifold of functions u(x) € C?(Q)NC*(Q\0Qp) satisfying
the boundary conditions (6) and (7).
Let Ly1 be a closure of the linear operator in Ly(2) given by the differential expression

Lu = —Au(z), =€, (11)

on the linear manifold Wy;.
It is easy to see that the domain of the definition of the given operator consists of strong
solutions to the problem S,;. Clearly, this domain of the definition is dense in Ly (£2). Hence,
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the adjoint operator to the operator L,; exists. Since the initial operator is given by the
boundary conditions, then its adjoint operator should also be given by the boundary condi-
tions. Moreover, the adjoint operator is given by the differential expression (11).

In order to construct the adjoint operator, let us consider the following difference

(Loiu,v) — (u, Lv) =0 (12)

for all uw € Way and v € C%(Q) N C! (Q\9Qy).
We apply the Green’s theorem in a plane to (12) to get

ov ou
%{uan—van}ds:o, (13)

oN

where o is a derivative with respect to the direction of the outer normal to 2.
n

Hence, taking into account the boundary conditions (6) and (7), to which functions u €
Waa satisfy, we get from (13) that

/{u(x*) Bfl(m*)mg:;(x) —ZZ(J;*) [v(m)—i—v(m*)]}ds:o.

90

ou
Since u(z) and —— (z) are independent of each other, we obtain the boundary conditions for

the functions v € C?(2) N C* (2\0€), which belong to the domain of the definition of the
adjoint operator

v(x)+v(x*) =0, ze€dfdy, (14)
v o
OA%(SE)—F%(JJ )=0, z €. (15)

Taking the limit of the sequences corresponding to the strong solutions, it is immediately to
see that equality (12) holds for all u € D (La1) and v € D (L%,).

As in Section 3, it is easy to show that the problem with the boundary conditions (14)-
(15) is Fredholm. Consequently, this problem is formal adjoint to S,;. In the next section,
the well-posedness of S,1 with a # 1 will be justified in the sense of both classical and strong
solutions. Hence, the inverse operator L;ll exists and is defined everywhere in La(2).

Here, by standard arguments related to the coincidence of the adjoint operator to the
inverse one and the inverse operator to the adjoint one for the linear closed operators, we
obtain that the adjoint problem to S, is a problem for the Poisson’s equation

—Av=g(z), z€Q, (16)

with the boundary conditions (14)—(15).
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Thus, the adjoint problem (in the sense of classical solutions) is the following problem:

The problem S%,. Find a function v(z) € C*(Q) N C' (Q\0Q) satisfying the Poisson’s
equation (16) in the ball Q@ = {x : |z| < 1} C R™ and the boundary conditions

v(z) +v(z*) =7(x), =iy, (17)
agZ(x) + gz (%) = p(x), =€ Iy, (18)

where g(x) € C5(Q), 7(z) € C1T[0Q,], u(x) € C¢[004], 0 < e < 1, a is a fived real number
from (2) of the problem Sa1.

Thus, we have obtained the following result:

Theorem 2. The boundary value problems Sq1 and S, form a Fredholm pair.

5 The well-posedness of the problem S,
By Theorem 1 we know that the well-posedness case is the case when « # 1.
For convenience, let us formulate this problem again.

The problem S,;. Find a function u(x) € C%(Q) N CY(Q\0Q) satisfying the Poisson’s
equation

~Au(e) = f(2), e, (19)
and the boundary conditions
u(z) —au (z*) = 7(x), x € 00y, (20)
ou ou , .
%(.ﬁ)—%(x ) _M(x)v $€6Q+, (21)

where f(x) € C5(Q), T(x) € CYe[004 ], u(x) € C[004], 0 < & < 1 and « is a fized real
number. Here, é% is a derivative with respect to the direction of the outer normal to 0f).

It is clear that a necessary condition for the existence of the solution in the class C*(Q)
is the fulfillment of the following conditions

(0,29, ... xy) = 1 (0, 0x9,...,anx,) =0, x € 00y,
(22)
7(0,22,...,25) =7 (0,229, ..., apxy) =0, x € 0Qy, when a=1.

Let us briefly demonstrate that problem (19)-(21) can be reduced to two boundary value
problems for Poisson’s equation with self-adjoint boundary conditions.
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Note that when we change to a new variable z* = (—z1, agzs,...,anzy), the "radial
derivative” in spherical coordinates does not change its sign:
o - z; 0 B a;x; Oxj; O
or* ]Z_; |2*| Oz} Z x| Oz} 8;1: Z |:n| am] N
So, we have
ou 0
— )= — * Q. 2
(5) ) = gn ), aeo (23
Let us now introduce the auxiliary functions U(x) and V(x):
u(x) —u(x*) =2U(z), u(z)+u(z*) =2V ().
Clearly,
u(z) = U(z) + V(z), (24)
and
U(x)=-U(z"), V(z)=V(z"), z€Q. (25)

By the direct calculation, one can verify that the function U(x) is a solution of the Neumann
problem:

—AU = f_(z), z€Q, (26)
) = (), w00 (27)

while V' (z) is a solution to the Dirichlet problem:
—AV = fi(z), z€Q, (28)
V(z) =14(x), x €. (29)

Here, .
fe(@) = S {f(@) £ f (")}, (30)
1 M(l‘), S aQ-‘ra
po) = (31)
—p(x*), xed_,
1 T(z) — (1 +a)U(x), x€ 00y,

() = (32)

I=a| L1 +U @), zean_.

We note that the function 74 (z) depends not only on 7(x), but also on U(x) on the part
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of the boundary 92,. Therefore, these two problems should be solved sequentially: first, the
Neumann problem for U(z), then, using the obtained solution, we solve the Dirichlet problem
for V().

The Neumann (26), (27) and Dirichlet (28), (29) problems are classical boundary value
problems. So, nowadays, the well-posedness of these problems and smoothness of solutions
are well-known. By the assumption of fulfillment of the matching conditions (22), it is easy
to verify availability of the required smoothness of the boundary functions 7 (x) and p—_(x).

For the Neumann problem (26), (27), by (30) and (31) we see that the necessary and
sufficient conditions for the existence of the solution hold:

! - (2)dz+ / i (2)dS, = 0.

o

Therefore, the solution U(x) to the Neumann problem (26), (27) exists for all f(z) € C(Q)
and p € C¢[024], and belongs to U(x) € C?¢(Q) N C1T(Q).

Consequently, the boundary function 7. (z) from (32) belongs to C'*¢[92;] and
C1+e[0)2_]. Therefore, the solution to the Dirichlet problem (28), (29) exists and is unique.
This solution belongs to C?¢(2) N C**+¢(Q\9€y).

The solution to the Neumann problem (26)—(27) has the form

Ux) = / G (. 9) f—(y)dy + / G (&, y)u(y)dS, + O, (33)
Q o0

while the solution to the Dirichlet problem (28)—(29) is

V) = [ ol fewy — [ ZEHED s, (34)
Q oN

where Gp(z,y) and Gn(z,y) are Green’s functions of the Dirichlet and Neumann problems
for Poisson’s equation in 2, respectively. By the construction of the function U(z), it must
have the symmetric property U(z) = —U (2*), which means that C; = 0. Therefore, we
further assume that this condition is fulfilled.

By substituting the functions f_(y) and p_(y) in the representation of U(z), we get

Ux) = / Gz 9) f—(y)dy + / Gz y)u_(y)dS,
Q o0

—5 [ o U - F @+ [ Gx@pnwis,

Q o0,
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92

—5 [ Gnwntds, =5 [y -Gy @) fwdy+ 5 [ Guepnwis,
a0

o0 _ Q

—% / Gn (z,y") ply)dSy = ;/(GN(%Z/) =GN (z,y%)) f(y)dy

Elol 9)

+% / (GN(z,y) — GN (z,97)) p(y)dSy.
a0

Next, plugging the functions f4 (y) and 74 (y) into the representation of V(x), we obtain

V) = [ Gl )+ 1N dy - | [ D )~ 1+ @)U has,
Q o0

+ / 0GDEY) (1 (%) — (1 + ) (47) S, :;/(GD(x,y)JrGD (z,5%)) f(y)dy

ony
o9 _ Q

) / <aGD(:c,y) L 9Gp (x’y*)>7-(y)dsy

N 11—« 8ny 8ny
o0,
1+« 0Gp(z,y) OGp(z,y*)
T / < o, + on, U(y)dSy.
804

Now, we combine them to get

u(w) = V(@) + V(&) = § [ Gxla) = G (09") + Goley) + G (o.37) F5)dy
Q
1+« 0Gp(z,y) OGp(x,y*)
+1 -« / ( gny * %ny )
PR

X (; / (GNn(y,2) — Gn (y,2%)) f(z)dz) ds, +% / (GN(z,y) = Gn (2, 97)) 1(y)dSy
J o0,

+1+ch / dGp(z,y) +3GD($7Z/*)
1—« Ony Iny
Q4
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1k / (G (y.2) — G (y,27)) u(2)dS. | dS,
a0,

_1ia / (8G§T(:;,y)_'_aGD(?ELZ,y*))T(y)dSy (35)
a0,

Thus, we have proved the following theorem.

Theorem 3. Let a # 1 and let the natural matching conditions (22) be satisfied. Then for
all f(x) € C5(Q), 7(z) € C1FE[0Q,], u € C¥[094], 0 < & < 1, the solution to the problem
Sa1 (19)-(21) ewists, is unique and can be represented in the form (35). This solution belongs
to C2He(Q) N C1HHE(Q\0Q).
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Hyxenbaesa A.A., Cagpibeko M.A. IITAPJIAY'BL JIAIIJIAC OIIEPATOPBI YIIIIH
CAMAPCKUI-MOHKNH TEKTEC HIETTIK ECEBI 2KAIJIbI

Bya »xymbicra mapaars! Jlamiac omneparops yinin Camapckuili-MloHKrH ecebiHiH Kol eJI-
IeM/Ii 2KaJIlbLIaMachl OOJIBII TaOBLIATBIH OeiIoKa MeTTIK ecebi KapacThIpbLIabl. Ecenri,
KUCBIHJIBLIBIFBI 3€PTTEJI *KOHE MIEITIMHIH NHTEerPaJIJIbIK, KeiilreMeci aJIbIHIb.

Kinrrik ceznep. Jlamtac oneparopsi, [lyaccon renjieyi, 1mexkapasbik, ecen, Oefijiokasl meT-
TiK ecen, Camapckuii-VloHKUH ecebi.

Hyxenbaesa A.A., Campibexos M.A. OB OJHOI KPAEBOI 3AJIAYE TUIIA
CAMAPCKOT'O-UOHKHWHA 1JId OIIEPATOPA JIATIJTACA B IITAPE

B manmoit pabore paccMaTpuBaeTcsa HeJIOKaIbHAasT KpaeBas 3aa4a i oneparopa Jlamma-
ca B IIape, sIBJISIIONIAsICS MHOTOMEPHBIM 00o0tenneM 3atadu Camapckoro-Monkuna. Uccite-
JIOBaHa KOPPEKTHOCTD 3a1a9K U IOJYIEHO HHTEIPAIBHOE IIPEICTAB/IEHIE PEIIeHNs.

Kinrougesnre cioBa. Oneparop Jlamnaca, ypasuenne [lyaccona, kpaeBast 3ajiada, HEJIOKAb-
Hasl Kpaepasi 3aja4a, 3aada Camapckoro-MonkuHa.
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Abstract. In this paper, we study a boundary value problem with a parameter for the Mathieu equation
with cubic nonlinearity. The boundary condition of this problem is periodic. An additional condition

is given to determine the unknown parameter. We present a numerical algorithm to solve the problem

under consideration.

Keywords. Mathieu’s equation with parameter, numerical algorithm, Newton’s method.

The Mathieu equation appears in applied mathematics and many engineering fields; see
[1] and references therein. This equation includes numerical parameters which characterize
effect of various factors on the behavior of processes studied. For finding their values we
need to impose some additional conditions. Various problems for differential problems with
parameters have been investigated in [2]-[8].

We consider the Mathieu equation with a parameter that is expressed via two quasilinear
ordinary differential equations of the first order

d

% =z, t€(0,7T), (1)
d
a2 _ —x1 + elacos(2t)zy + i) + psin(2t) + g(t), t € (0,7T), (2)

dt
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subject to the periodic boundary conditions
21(0) = 21(T), z2(0) = z2(T), (3)

and additional condition
21(0) = ¥, (4)

where £ > 0, a, 3, and z{ are some given numbers, and g(t) is a continuous on [0, T] function.

By a solution to problem (1)—(4) we mean a triple (u*, x7(t),z5(t)), where pu* € R and
x3(t), x5(t) are continuous on [0, T] and continuously differentiable on (0,T) functions, sat-
isfying conditions (3), (4) and system (1), (2) with pu = p*.

The aim of this paper is to develop a numerical algorithm for solving problem (1)—(4)
based on the method proposed in [9], [10].

We reduce the problem under consideration to a problem with an additional parameter
A that is chosen as the value of the function z2(¢) at the point ¢ = 0: A = x2(0). Then, by
substituting u1(t) = z1(t) — 29, uz(t) = z2(t) — A, problem (1)—(4) is transformed into the
following problem:

%ZUQ—I—)\, te(0,7) ()

% = —(u1 + 29) + elovcos(2t) (ur + 2) + Blug + 1)) + psin(2t) + g(t), t € (0,T), (6)
w1 (0) =0, uz(0) =0, (7)

w(T) =0, uy(T) = 0. (8)

A solution to problem (5)-(8) is a quadruple (p*, \*, uj(t),us(t)), where p*, \* € R and
functions uj(t), u3(t) satisfy the system of nonlinear differential equations (5), (6) and con-
ditions (7), (8) with u = p* and A = A*. Obviously, if this quadruple is a solution to problem
(5)—(8), then the triple (u*,x%(t), x5(t)) with 2% (t) = ui(t) — 2§ and 23(t) = u3(t) — \* is a
solution to problem (1)—(4).

Let us choose some numbers A, 4@ py > 0, and pu > 0. Suppose that the Cauchy
problem (5)—(7) has a unique solution u(t, A, ) = (ui(t, \, p), ua(t, A\, p)) for all A € (A9 —
Px, Ao+ px) and p € (po — pp, o+ pyp). By substituting the value w(T', A, i) into the boundary
condition (8), we get the following system of nonlinear algebraic equations in parameters A
and p:

Ul(Ta A, M) =0, (9)

ua (T, A\, p) = 0. (10)

Problem (5)—(8) is solvable if the system of algebraic equations (9), (10) has a solution
(X, %) € (AO = px MO 4 o)) x (O =, 1@ + py).
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We represent system (9)—(10) in the vector form

Q*(Aau) =0, (11)

and find its solution applying Newton’s method taking as an initial assumption the pair
(MO, 1) that we have arbitrarily chosen as the centers of the above-mentioned intervals.
The question now arises: how to choose a good initial assumption that is close enough to
the exact solution? If we take into account that € > 0 is a small number, it is reasonable to
determine the values of A(9) and u(9) by solving problem (5)—(8) for € = 0. In this case, we
get the linear boundary value problem with parameters

% — A (u+ N+ BOu+ f(t), te(0,7), (12)
u(0) =0, (13)
u(T) =0, (14)

- a 0 1 0 0
where A = ( I\ >, At) = ( 1 0 ), B(t) = ( sin(2t) >’ 10 = ( g(t) )

As is known, for fixed A and p, the Cauchy problem for the linear differential equation
(12) subject to the initial condition (13) has a unique solution wu(t, X, x). Let ®(t) be a
fundamental matrix of the differential equation Cfl—f = A(t)z, t € [0,T]. We can then represent
the solution to (12), (13) in the form

w(t, A, 1) = (1) / O (1) A(7)drA + B(#) / &1(1)B(r)drp
0 0

t

+a(t) / O () f(r)dr, te0,T). (15)
0

Let us consider an auxiliary Cauchy problem

% = A(t)z+ P(t), t€[0,T], 2(0) =0, (16)

where P(t) is a (2 x 2) matrix or a vector of the dimension 2 that is continuous on [0,T]. By
a(P,t) we denote the unique solution to problem (16), which can be written as

a(P,t) = B(#) / o (r)P(r)dr, t < [0,T].
0
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Then, solution (15) to the Cauchy problem (12), (13) can be represented through a(P,t)
as

u(t, \, 1) = a(A, )N + a(B, t)p + a(f, t). (17)

Substituting the right-hand side of (17) into the boundary condition (14), we get the
system of linear algebraic equation in parameters A and pu:

Q11 (12 :c(l] /81 ga! _
<a21 a22)<>\>+<ﬁ2>#+<72>_0’

where ( Z;i Z;z ) =a(A,T), ( g; > =a(B,T) and ( 1; ) =a(f,T).

Rewrite this system in an equivalent form

1o\ + Bipp = =1 — an1al, o\ + fopp = —y2 — agial. (18)

We will use the solution to (18), the pair (A(?), u(9)  as an initial assumption for the
solution of (11) when applying Newton’s method.

Now that we have got the initial approximation, we are in position to continue the iterative
process for finding the solution to the system of nonlinear algebraic equations (11). The
successive approximations are determined by the formula

ACEDY A 0Q. ™, )] ™ RO -
PCE I R W COR oy QA" ), n=0,1,..., (19)

where

6@*()\(n) u(n)) ( 6u1 (T7g(:)nu'(n)) aul(Tv/\(n)uu'(n)) )

0
3y Aug (TA™ 1) duy (T7)\fL:z)7u(n))
o ou

The vector Q.(A™, (™) in (19) is determined as

(n) ,(n)
) )y _ [ wn(T, AN, )
Q«(A™, ™) ( (T, A, )y |

where w1 (t, A", u(™) and uy(t, A, u(™) are the solutions to the Cauchy problems (5), (7)
and (6), (7) with given A = A and p = p(™.

In order to determine the elements of the Jacobi matrix %ﬁ’“(m) in (19), we will use
the following equalities
duy (t, X (7))
dt

— us(t, A ) £ A, ¢ € (0,T), (20)
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dUQ <t7 )\(n) , /’[/(n))
dt

= —(ur (8, A7, u) + 29) + elavcos(2t) (ua (8, A, p™) + )

+B(ur (6, A™, uM) + 29)%] + psin(2t) + g(t), t € (0,T), (21)
ur (0, A7, u) =0, uz(0,A™, M) =0, (22)
which hold true for any pair (A™), (™) € (A0 — py AO 4 p3) x (1@ — p,, 1@ + p,).

To find the elements of the first column of the Jacobi matrix, we differentiate both sides
of each of the equations (20)-(22) with respect to \. We get

+1, te€][0,T7],

dt o\ N o\
8u1 (t7 A(n)7 M(n))
oA ’

d (8u2(t, A ()

dt O\

g > = (=1 + eavcos(2t) + 3eBu1 (t, A, u™) + 29)2)

Aup (0, A (7)) 0 duz (0, XM ()

oA ’ oA

. . (n) y(n)
It can be seen from these equations that the functions Ugn) (t) = %, Uén) (t) =

(n) ,(n) . . . . . .
% satisfy the following Cauchy problems for ordinary differential equations

%:024‘1, t e [O,T], (23)
% = (—1+eacos(2t) + 36ﬂ[$§n) t)]*)vy, te(0,T), (24)
v1(0) =0, v2(0) =0, (25)

where ajgn) (t) = ug (£, A, ™) 4 29.

In the same way we determine the elements of the second column of the Jacobi matrix.

Differentiating both sides of (20)—(22) with respect to u, we conclude that the functions

(n) 1, (n) (n) y(n)
w{")(t) = 23 ) (1) = ualbA)
ordinary differential equations

are the solutions to the Cauchy problems for

dw1

T wy, t€[0,T], (26)
% = (—1+4+eacos(2t) + 36B[x§n) (t)}Q)wl + sin(2t), te[0,T], (27)
w1(0) =0, wy(0)=0. (28)
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Thus, the Jacobi matrix is determined as

0Q. (A, u™) (1) W§(T)
oy N ’

where (U%n) (1), vé”) (t)) and (wgn) (1), wén) (t)) are the solutions to the Cauchy problems (23)—
(25) and (26)—(28), respectively.

Summarizing the above, we propose the following numerical algorithm for solving the
quasi-linear boundary value problem with parameter (1)—(4).
Step 0. Set the initial assumption (A, u(9)) for parameters (\, ) as a solution to the
system of linear algebraic equations (18) with coefficients determined by solving the auxiliary
Cauchy problems (16).
Step 1.

(a) Solve the Cauchy problem (5)—(7) with A = A® and y = u© by the fourth-order

Runge-Kutta method with a step size h > 0 : 2Nh = T. Use the numerical solution

w(t, A, 4O, where £ = {0, h,..., (2N — 1)h,2Nh}, to construct the vector Q. (A, u(0)) =
up (T, A\ 1,0 ) 0 .

( u;ET A©), Zm); and the function &} (t) = 28 + u1 (i, A©), u(®).

(b) Solve the Cauchy problems (23)-(25) and (26)—(28) by the fourth-order Runge-Kutta

method with the step size h; = 2h (we have to double the step size since we know the values

of 5650) (t) only on the grid {0,h,..., (2N — 1)h,2Nh}). Use the numerical solutions U&o) (1),

véo) (t) and wgo) (), wéo) (t) to construct the Jacobi matrix

0Q.O, ) [ Oy WP (1)
dy (1) wi(T) )

: . 0) ,,(0)
(c) Assuming that the matrix M

to the solution of (11) by the formula

-1
A A0 Q. (A 1,0
— B B AN N DA LA 0

As we continue this process, at the n-th step we find ()\(”),,u(")), U1 (t,)\(”),,u(”)) and
ua(t, A1) ,u(”)), n=1,2,.... The convergence conditions for the iterative process in terms of
Q+«(X, ) and its Jacobi matrix are given in Theorem 4.1 [10, p.1019].

Example. Let us consider problem (1)-(4) with 7' =2, a =0, 8 =1, ¢ = 0.1, g(t) =
(1 — %) sin(7t) + 1 — 0.1(sin 7t + 1) — 2sin(2t), 2 = 1. The exact solution to the problem
sin(7t) + 1
7 cos(mt)

is invertible, determine the next approximation

is the pair (p*, 2*(t)), where p* = 2, 2*(t) =
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At each step of the algorithm proposed, we solve Cauchy problems for ordinary differential
equations by the fourth-order Runge-Kutta method. Let us take the step size h = 0.1.

By solving the linear boundary value problem (12)-(14) we obtain (A9, ) =
(3.16785,2.52888). Starting with this initial approximation, we perform the iterative process.

. 0.529103 QLA O 1.50188  0.958459
Iteration 1. Q.(\%, u®) = ( 0.100919 ) 7 = | _1.05007 0322619 |

(AW Wy = (3.11852,2.05414).

Feration 2. Q.(\1), 4(1) — ( 0.0188694 ) 0D ) _ ( 1.3985  0.924797 )

0.0408092 % —1.24978 0.221606

(A®) @) = (3.14141,1.99911).

—0.00107237 @ @ 1.4036  0.925345
i 2 1,2y = 9Q: A2 ,uD)
Iteration 3. Q.(A™, 1) ( 0.00000000 ) dy (—1.25054 0.220128 )

(A3 1By = (3.1416,1.99999).

. —0.00000000 50 (AT (T 1.4038  0.925399
7 _ QA (T
Iteration 8. Q-(\( )’“m)_< —0.00000000 ) oy = < —1.25027  0.22027 )

(A®) 1®)) = (3.1416,2.00002).
The comparison with the exact solution (A*, u*) = (m,2) gives

IA® — A" <0.0011, [|u® — u*| < 0.00003.
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YIIIH ITAPAMETPI BAP CBISBIKTHIK EMEC IIETTIK ECEIITI IHEITY AJI'OPUT-
MI

Byn makamaga KyOTBIK CBIBBIKCHI3ALIFLI Oap MaTtbe Temmeyi yImia napaMerpi 6ap merTik
€celTi KapacTblpaMbl3. ByJl ecenriy meTTik mapThl MeproaThl 606 TabbLIabl. Bericis ma-
paMeTp i aHBIKTay VIIiH KOCBIMINA mapT Oepineni. KapacThIpbLUIBII OTBIPFAH €CeNTi IIelryTre
apHAJIFaH CaHIbIK AJTOPUTMJI YCHIHAMBI3.

Kirrrix cezaep. Ilapamerpi 6ap Matbe Termaeyi, canabik ajaroput™m, HeoTon omici.

‘,Z[}KyMa6aeB J.C. ‘, Jla E.C., IlycypmanoBa A.A., Kucam 2K.2K. AJI'OPUTM PEIIIE-

HUS HEJIMHEVHON KPAEBO 3AJIAYN C ITAPAMETPOM J1J151 YPABHEHU ST MA-
ThE

B sT0i1 cTarhe MBI paccMaTpUBaeM KpPaeByIo 3aJady ¢ IapaMeTpoM i ypaBHeHust Marbe
¢ Kybuueckoit HeuHeiTHOCTRIO. KpaeBoe yciioBue MaHHON 3a1a9H SIBJISIETCS TEPUOTTIECKIM.
3a/1aH0 JOTOJHUTEILHOE YCIOBUE JJIsI OIpPeeIeHns HeM3BEeCTHOrO apamerpa. Mbl mpeia-
raeM 4uCJICHHBIN aJI'OPUTM PeIIeHUs pacCMaTpUBaeMON 3a1a4M.

Krouesnre ciioBa. ¥YpaBHeHne MaTbe ¢ mapaMeTpoM, YUCACHHBIN agaropuT™, MeTox Hbro-
TOHA.
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Abstract. In the present paper, we study a multipoint boundary value problem for a system of Fred-
holm integro-differenial equations by the method of parameterization.The case of a degenerate kernel is
studied separately, for which we obtain well-posedness conditions and propose some algorithms to find
approximate and numerical solutions to the problem. Then we establish necessary and sufficient con-
ditions for the well-posedness of the multipoint problem for the system of Fredholm integro-differential
equations and develop some algorithms for finding its approximate solutions. These algorithms are
based on the solutions of an approximating problem for the system of integro-differential equations with

degenerate kernel.

Keywords. Fredholm integro-differential equation, multipoint problem, parameterization method, algo-
rithm, solvability criteria.

1 Introduction

Various types of multipoint problems for differential and integro-differential equations
have been studied by many researchers, see [1]-[15]. A number of methods have been applied
to solve these problems, e.g., methods of qualitative theory of differential equations, the
method of Green’s functions, the method of upper and lower solutions, numerical-analytical
methods. However, the problem of establishing effective criteria for the unique solvability of
multipoint problems for integro-differential equations, as well as developing algorithms for
finding their approximate and numerical solutions, still remains open.
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One of the constructive methods for investigation and solving boundary value problems for
ordinary differential equations and integro-differential equations is the method of parameteri-
zation proposed by Dzhumabaev [16]. This method was originally developed for studying and
solving boundary value problems for the systems of ordinary differential equations. In [16],
coefficient criteria were established for the unique solvability of linear boundary value prob-
lems. An algorithm for finding their approximate solutions was developed. The method of
parameterization was later extended to linear multipoint boundary value problems [10], [11],
for which necessary and sufficient conditions were obtained for the unique solvability in terms
of the initial data and the algorithm for finding their approximate solutions was proposed.
In [17]-[20], the method of parameterization was applied to the two-point boundary value
problems for Fredholm integro-differential equations to establish criteria for their solvability
and the unique solvability. For these problems, based on the method of parameterization and
a new concept of a general solution, novel algorithms for approximate and numerical solutions
were developed, see [21]-[23]. The results obtained in the above-mentioned papers were used
to investigate a multipoint boundary value problem for loaded differential equations [4] and
the boundary value problem with a parameter for Fredholm integro-differential equations [3].

Consider the multipoint boundary value problem for the system of integro-differential
equations

T
Z—j = A(t)xr + /K(t,r)x(T)dT + f(t), x€R", te(0,7), (1.1)
0

(2

0
Here z(t) = col(x1(t),za(t), ..., zn(t)) is an unknown function, (n x n) matrix A(t) and n-
vector f(t) are continuous on [0, 7], (n x n) matrix K (¢, ) is continuous on [0,T] x [0,T], B;

are constant (n x n) matrices, 0 =tg <t <ty <.. <ty_1 <ty =T, |z| = max |z
i=1,n

The solution to multipoint problem (1.1), (1.2) is a function z*(¢) : [0,7] — R™ that
is continuous on [0,77], continuously differentiable on (0,7") and satisfies integro-differential
equations (1.1) and multipoint condition (1.2).

The aim of the present paper is to obtain criteria for the unique solvability of problem
(1.1), (1.2) and develop algorithms for finding its approximate solutions. To this end, the
parameterization method is used. The interval [0, 7] is partitioned and additional parameters
are introduced as the values of the desired solution at the left endpoints of the partition
subintervals. When applying the method of parameterization to problem (1.1), (1.2), some
intermediate problems occur, so called special Cauchy problems for integro-differential
equations with parameters. The questions of solvability and unique solvability of such
problems were thoroughly investigated in [17]-[23].
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Section 2 is devoted to the study of Fredholm integro-differential equations with degener-
ate kernel. We divide [0, 7] into m parts and introduce additional parameters as the values of
the desired solution at the left endpoints t = ¢;, ¢ = 0, m — 1, of the subintervals. The unique
solvability of a special Cauchy problem for the A,, partition is equivalent to the invertibility
of a matrix I —G(A,,) constructed through a fundamental matrix of the differential part and
the matrices of the integral kernel. The A,,, partition is called regular if the matrix I —G(A,,)
is invertible (see [21]). For the regular A,, partition, a system of linear algebraic equations
in the parameters introduced is constructed using [I — G(A,,)] !, the multipoint condition
(1.2), and the continuity conditions at the interior partition points ¢ = t;, i = 1,m — 1. It
is shown that the invertibility of the matrix of the system constructed is equivalent to the
unique solvability of the multipoint boundary value problem under consideration.

In Section 3, we develop the algorithms for finding a solution to a multipoint boundary
value problem for the integro-differential equation with degenerate kernel. For the chosen
A, partition, the matrix G(A,,) is calculated. If there is an inverse of I — G(A,,), then
we construct a system of linear algebraic equations. The elements of G(A,,), the coefficients
and right-hand side of the system are determined by the solutions of the Cauchy problems
for ordinary differential equations and the values of the definite integrals of some functions
over the partition subintervals. By solving the system of algebraic equations, we determine
the values of the solution at the left endpoints of the subintervals. Next, using the values
obtained and the data of the integro-differential equation we compose a function F*(t) that
is continuous on [0, T]. Solving the Cauchy problems for ordinary differential equations with
the right-hand side F*(¢), we get the values of the desired solution at the remaining points of
the interval [0, T']. If a fundamental matrix of the differential part is found explicitly and the
integrals are evaluated exactly, then the algorithm allows us to find a closed-form solution
as well. As is known, it is usually impossible to explicitly find the fundamental matrix for
a system of ordinary differential equations with variable coefficients, and, in general, only
approximate values of definite integrals can be obtained. For this reason, in this section we
propose a numerical implementation of the algorithm. The Cauchy problems for ordinary
differential equations on the subintervals are solved by the fourth-order Runge-Kutta method;
the integrals are calculated by the Simpson formula. It should be noted that the elements of
the matrix G(A,,), the coefficients and the right-hand side of the system of algebraic equa-
tions in parameters can be evaluated by parallel computing on the partition subintervals.

In Section 4, a multipoint boundary value problem is considered for the Fredholm integro-
differential equation when the integral kernel is not degenerate. We approximate the kernel
by the degenerate one and then use the results obtained in Section 2. At each step of the
process, the multipoint boundary value problem for the integro-differential equation with
degenerate kernel is solved. We establish sufficient conditions for the convergence of the
iterative process to a solution of the multipoint boundary value problem for the Fredholm
integro-differential equation with non-degenerate kernel. The accuracy of the approximate
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solution depends on the choice of the approximating kernel and the number of iteration
steps. The necessary and sufficient conditions for the well-posedness of the multipoint prob-
lem (1.1), (1.2) are obtained in terms of the properties of solutions to approximating problems
for integro-differential equations with degenerate kernels.

2 The well-posedness of multipoint problems for Fredholm integro-differential
equations with degenerate kernel

Consider the integro-differential equation

dx i
&= x+§/% Ja(r)dr + f(), te(0,T), ze R, (21)

subject to the multipoint condition
m
> Biax(ti)=d, deR", (2.2)

where the matrices A(t), ¢;(t), ¥;(7), j = 1,k, and the vector f(¢) are continuous on [0, T,
] = max [
i=1,n

The interval [0,7) is divided into m parts by the points tg =0 < t; < ... <t, =T, and
m

the partition [0,7) = U [tr—1,t,) is denoted by A,,. The case of no partitioning the interval
r=1
[0,T] is denoted by A;.
We introduce the following spaces: C([0,7], R") is the space of continuous functions

x:[0,T] — R" with the norm ||z|; = n%au%] lz(t)];

C(]0,T], An, R™) is the space of function systems z[t] = (x1(t), z2(t), ..., zm(t)), where
functions x, : [t,—1,t,) — R™ are continuous and have finite left-handed limits . _1>1trrn_ . x,(t)
for all r = 1,m, with the norm ||z[-]||]s = max sup ||z.(¢)|.

r=1mtet,_1,t,)

Let z,(t) be the restriction of the function z(t) to the rth subinterval [t,_1,t,), i.e. z,(t) =
x(t), t € [tr—1,t.), 7 =1, m.

We introduce additional parameters A\, = x,(t,—1) and make the substitution z,(t) =
ur(t) + Ay on each rth subinterval. Multipoint problem (2.1), (2.2) is then reduced to the
following problem with parameters:

m k ts
M A A WSS / (P (F)+ M A+ £ (1), € (borsty), 7= Tom, (2.3)

dt
s=1 j= 1ts
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ur(tr—1) =0, r=1,m, (2.4)
m—1
> Bidij1+ BmAm + B lim up(t) =d, (2.5)
=0 t—=T-0
Ap + )Hhtm Oup(t) —Ap+1 =0, p=1,m—1, (2.6)

where (2.6) are the continuity conditions for the solution at the interior points of the partition
A,,. Note that conditions (2.6) and integro-differential equations (2.3) ensure the continuity
of the derivative of the solution at those points.

If 2*(t) is a solution to multipoint problem (2.1),(2.2), then the pair (\*,u*[t]) with
elements \* = (A}, A5, ..., A%) € R™™ w*[t] = (uf(t),u3(t), ..., uk (1)) € C([0,T], Ap, R™™),
where A\l = x*(t, 1), uy(t) = 2*(t) —2*(t, 1), [tr—1,tr), 7 = 1,m, is a solution to the problem
with parameters (2.3)—(2.6). Vice versa, if a pair (X, u[t]) with elements A = (A1, Az, ..., Am) €
R at] = (w(t),da(t), ..., um(t)) € C([0,T], A, R"™), is a solution to problem with
parameters (2.3)-(2.6), then the function Z(t) defined as z(t) = A 4 r(t), t € [tro1,ty),
r=1,m,z(T) = A\n + t_l)ierO Um(t), is a solution to the original problem (2.1), (2.2).

d
If X,(t) is a fundamental matrix of the differential equation S A(t)x, on [ty_1,tr],

then the special Cauchy problem for the system of integro-differential equations with param-
eters (2.3), (2.4) is reduced to the equivalent system of integral equations

(t) =

Uy
t t m okt
— X / X-L(r)A(F)drAr + X, (1) / 1YY / Y (1 s ()i
tr—1 tro1 s=1i=147,
¢ m ok
+X,(t) / > > / )i (1) dridT A
oy s=1 j=1 teq
t
+X, (1) / XUV f(r)dr, t € [trsty), r=T,m (2.7)
tr—1
m ts
Setting p; = Z / Y;(T)us(T)dr, rewrite (2.7) in the following way:
s=1 to )

up(t) = / X () (7)driy + X (t / X- )[A(T))\T

tr—1
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+Z‘P] Z /1/JJ 7'1 d7'1)\ +f( ):|d7' t e [trfl,tr), r=1,m. (2,8)

81t51

Multiplying both sides of (2.8) by ,(t), integrating them over [t,_i,t,], and sum-
ming up with respect to r, we get the following system of linear algebraic equations in
n= (/le"'nu'k) ERnk:

k
=3 Gpi(Ap, Z+var )+ 9p(f, Am), p=1,F, (2.9)
=1

with (n X n) matrices

Z /Q,Z)p )/Xr_l(ﬁ)gol(ﬁ)dﬁdﬂ (2.10)
r=1 b o1
/wp /X (11)A(m)dmidr
m k 7 tr
+ZZ /wp )/X51<T1)(pj(T1)dT1dT / V;(T2)dr2, (2.11)
S= 1-] 1 ts—1 ts—1 tr—1
and vectors of the dimension n
m tr T
gp(fi Am) =Y /%(T)XT(T) / X, N (n)f(n)dndr, p=1,k, j=1,k (2.12)
r=1 tr—1 tr—1

Using matrices Gp(Ap) and V,.(Ay,), we construct matrices G(Ay,) = (Gpi(An)), p,1 =
1,k, and V(Ap) = (Vpr(An)), p=1,k, r=1,m. Then, system (2.9) can be rewritten in
the form

[ = G(Amn)lp =V (An)A+9(f, Am), (2.13)
where I is the identity matrix of the dimension nk, g(f, An) = (g1(f, Am), - 9k (f, Ap)) €
Rk
Definition 1. The partition A, is said to be regular if the matriz I — G(Ay,) is invertible.

d
Any fundamental matrix of the differential equation M _ A(t)x, on [ty—1,t,] can be

dt

represented as X,.(t) = X2(t) - O, where X?(t) is the normalized fundamental matrix
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(X2(t,—1) = I) and C, is an arbitrary invertible matrix. Thus, the following equalities
hold true

Goi(Am) = / Up(7) XO(r)C, / X0(r1)Cy]u(my)dmydr
r=1 tr—1 tr—1
m tr T
= Yo (1T)X2(7) XO(r)] Yy (11)dridr,
Z/) <tr/l[ D1 ()

and the regularity of the A,, partition does not depend on the choice of the fundamental
matrix for the differential part of the equation.

Let us denote by o(k,[0,T]) the set of regular partitions A, of the interval [0,7] for
equation (2.1).

Definition 2. The special Cauchy problem (2.3),(2.4) is called uniquely solvable if it has a
unique solution for any A € R™ and f(t) € C([0,T], R").

The special Cauchy problem (2.3), (2.4) is equivalent to the system of integral equations
(2.7). Since the kernel of (2.7) is degenerate, this system, in turn, is equivalent to the system
of algebraic equations (2.9) in y = (i1, ..., ux) € R™. Therefore, the special Cauchy problem
is uniquely solvable if and only if the A,, partition, generating this problem, is regular. Since
the special Cauchy problem is uniquely solvable for a partition with a sufficiently small step
size h > 0 (see [17, p.1152]), the set o(k, [0,T]) is not empty.

Let us take a partition A, € o(k,[0,T]) and represent the matrix [I — G(A,,)]~! in the
form [ — G(Ap)] ™t = (MM(Am)), 4,p = 1,k, where M;,(A,,) are square matrices of the
dimension n.

Then, taking into account (2.13), we can determine elements of the vector u € R™ from
the equalities

Z<ZM71’ >)‘ *ZM@ m)9p(fs Am), G =1,k (2.14)

=1 p=1

n (2.8), by replacing p; with the right-hand side of (2.14), we get the representation of the
functions wu,(t) through X\;, i =1,m :

up(t) = g{g Xr(t)tj1 X, )i (r)dr Lf:l M; (D) Vp,i(A) +tz/t: wj(n)dn] }Ai
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k

t k
X (t)/Xr_l(T) [Z ;T ZMW m)gp(fy A )—|—f(7')} dr, t € [ty—1,t;), 7 =1,m. (2.15)
tr1 j=1

=1

We will use the following notation:

k ¢ k
DrilBm) = Y- Xt [ X;1<T>soj<f>df[ZM]p<A Wy i(Am)
Jj=1 tr_1 p=1
+/¢j(T1)dT1:|, Z'#’I“, r,g=1,m, (2.16)
k t k tr
Derl@n) = Y X0t0) [ XT1<r>soj<f>df[2Mj,pmmm,r(Am)+ / wn)dn}
j=1 tr—1 p=1 tr—1
+X,.(t) / X_l(T)A(T)dT, (2.17)
t k k
Fr(Ay) = X,.(t) / X 1(r) [Zgoj(T)ZMj’p(Am)gp(f,Am)—|—f(7')]d7’, r=1,m. (2.18)
tr—1 J=1 p=1

From (2.15), we find the limits
dim un(t) = Z; Dy i(Ap)Ni + Fr(A). (2.19)

Substituting the right-hand side of (2.19) into condition (2.5) and continuity conditions (2.6),
we get the following system of linear algebraic equations in parameters ., r = 1, m:

m—2
Z [Bz + BmDr,i—&-l(Am)]Ai—i-l + [Bm—l + Bm + BmDr,m(Am>])\m =d-— BmFm(Am)7 (220)
=0

[{+Dpp(Am)|Ap—[I—Dppt1(A p+1+z Dpi(Am)Ai = —Fp(Am), p=1,m —1. (2.21)
i#D, 1#p+1

Let Q«(Ay,) be the matrix corresponding to the left-hand side of system (2.20), (2.21).
Then system (2.20), (2.21) can be written in the form

Qu(Ap)A = —F.(Ay), A€ R™, (2.22)
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where Fy(Ap,) = ( — d+ B Fon(Am), Fi(Am), - .. ,Fm_l(Am)> e R,

Lemma 1. The following statements hold true for A,, € o(k,[0,T]):

(a) the vector \* = (A}, A5, ..., A%) € R™, composed of the values of a solution x*(t) to
problem (2.1),(2.2) at the partmon points, \i = x*(t,—1), r = 1, m, satisfies system (2.22);

(b) if X = (A, Xa,. .., Am) € R"™ is a solution to system (2.22) and a function system
ult] = (u1(t),ua(t), ..., um(t)) is a solution to the special Cauchy problem (2.3), (2.4) with
, = /\T, r =1, m, then the function Z(t), defined as T(t) = A\p + 0, (t), t € [tr—1,t,), 7 = 1,m,
z(T) = Am + hmoum(t), is a solution to problem (2.1),(2.2).

>

2N

The proof of Lemma 1 repeats the proof of Lemma 1 in [24, p. 1155] with minor changes.

We will use the following notation: o = Ir[lg)T(] A,

r=1m r=1 m

% = max (t, — ty_1), F(k) = max / ZH% e, H(T) = max / lep(®) .
7 1

Theorem 1. Let A, € o(k,[0,T]) and let the matriz Q.(Ay,) : R™ — R™ be invertible.
Then problem (2.1), (2.2) has a unique solution x*(t) for any f(t) € C([0,T],R"), d € R",
and the following estimate holds:

[2* [y < N (k, Ap) max({|d]], || £1]1), (2.23)

where
Nk, Bm) = {0 [T = GAR)I - D) (€7 = 14+ ¢ - (k) - B(T) ) +H(T)] +1}
XY B )(1+ O mas {1, 1+ €27 - 5(k) - [T = G(Aw)] |- B(T) }

e %5 [ p(R) - I = G(Am)] M- B(T) - e +1]. (2.24)

Proof. Take a partition A,, € o(k,[0,T]). Let f(t) € C([0,T],R") and d € R". Since the
matrix Q«(A,,) is invertible, we can find the unique solution to the system of linear algebraic
equations (2.22): \* = —[Q.(An)] L E(An).

By solving the special Cauchy problem (2.3), (2.4) with A = \*, we get the function
system w*[t] = (uj(t),u3(t),...,uk,(t)). It follows from the regularity of the A,, partition
that there exists a unique function system u*[t] with the elements u}(¢) that are determined
from the right-hand side of representation (2.15) with A = A* = (A}, AS,...,Ak) € R™™.
Then, by Lemma 1, the function z*(¢) defined as z*(t) = X + u}(t), t € [tr—1,t), r = 1,m,
x(T) = N, + t_lj%n_o u’ (t), is a solution to problem (2.1), (2.2). The uniqueness of the

solution can be proved by contradiction.
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Let us verify the validity of the estimate (2.23). Using the equalities

t

(t) /t X, Y(r)P(r)dr = /P(Tl)dT1+ /t A(m) jP(Tg)dTQdTl

tr—1 tr—1 tr—1

T2

/ A 7'1 / A T2 / T3)d7’3d7’2d7’1 4. t e [tr_l,tr},

r—1

we get the estimates

X (8) / X7 (P (r)dr]| < ottt / les(lldt, v =Tom.  (2.25)

tr tro1

It follows from (2.12), (2.18), (2.25) that

lon(F Al <3 / ) 1% () [ X5 ) (o) far
tr—1

Tltrl

T
<y / lepldr -3l = [ Wplde- e @7l p=TE (220
0

Tltrl

1 (D) || < et Z / 13 ()14 =G (D)) ™| max [lgp (f, Ama) [ +e* Do || 1.
=17 p=1,k
By using ||Fx(An)]| < (14 HBmH)maX<Hd||, mal\\Fr(Am)||), and taking into account
(2.16), (2.25), and (2.26), we get ’

|Fe( Q)| < (1 + 1B max {1,562 |1

rgm / ZH% (O~ G(A)] ! mn / o (0l1dt] } max(all. [17]1). (2.27)

Inequalities (2.22), (2.27) and the invertibility of Q.(A,,) yield the following estimate:

IV < Qe (A M (Am)| < (A )(1 -+ || Byoll) maix { 1, |1
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r—m

e max /Zn% a1 = G(dy)) | max / oy (0) e} max(la] ). (2:28)

y (2.15) and (2.11), we get

tr

HU*HHzé{ * max /ZH% Ot — G(Am)] maX/\wp Hdt

a t'r‘ljl

Ly

4o mae [ (0) e max / Iy (0)a) + max / lp(Dldt] + >}||A||

r=1,m j=1,
tr—1

tr T _
e [ S gy O - G s [ 0= 1] 1l 220

rlmtrljl p=1,

Finally, by using (2.28), (2.29) and ||z*||1 < [|A*|| + ||u*[-]||2, we arrive at the estimate
(2.23). Theorem 1 is proved.

Definition 3. Problem (2.1), (2.2) is said to be well-posed if for any pair (f(t),d), with
f(t) € C([0,T],R") and d € R", it has a unique solution z(t), and the estimate

[l < K max([| £+, [|d]})

holds, where K is a constant independent of f(t) and of d.

Theorem 2. Problem (2.1), (2.2) is well-posed if and only if the matriz Q.(A,,) : R™ —
R™ s invertible for any partition A, € o(k,[0,T]).

Proof. For a fixed k and A, € o(k,[0,T]) the number N (k, A,,), defined by (2.24), does
not depend on f(t) and d. Thus the sufficiency of the conditions of Theorem 2.2 for the
well-posedness of problem (2.1), (2.2) follows from Theorem 1.

Necessity. Let problem (2.1), (2.2) be well-posed and A, € o(k,[0,T]). Suppose to the
contrary that the matrix Q.(A,,) : R — R™™ is not invertible. This is possible only if the
homogeneous system of equtions

Q.(AN)N=0, X R"™, (2.30)

has a nonzero solution. Assuming that A = (A1, A2, ..., Am) is a nonzero solution (i.e. HXH #
0) to system (2.30), consider the homogeneous problem (2.1), (2.2) with f(¢) =0 and d = 0.
For this problem, system (2.22) coincides with (2.30). Then, by Lemma 2.1, the function z(t)

KAZAKH MATHEMATICAL JOURNAL, 20:1 (2020) 103-124



114 Anar T. Assanova, Elmira A. Bakirova, Roza E. Uteshova

defined as Z(t) = A, + Up(t), t € [tr1,t,), 7 = Lm, Z(T) = Am + lim p,(t), is a nonzero
S

solution to the homogeneous problem. Here the function system u[t] = (u(t), u2(t), ..., um(t))
is a solution to the special Cauchy problem (2.3), (2.4) with A = X and f(¢) = 0. This
contradicts the well-posedness of problem (2.1), (2.2). Theorem 2 is proved.

3 An algorithm for solving multipoint problems for Fredholm integro-
differential equations with degenerate kernel and its numerical implementation

The Cauchy problems for ordinary differential equations on the subintervals

dx

i Alt)z + P(t), z(tr—1) =0, t € [ty_1,ty], r=1,m, (3.1)
are an essential part of the algorithm proposed. Here P(t) is (n X n) matrix or n vector that
is continuous on [t,_1,t.], = 1, m. Hence, a solution to problem (3.1) is a matrix or a vector

of the dimension n.
Let E.,(A(-), P(:),t) denote a solution to the Cauchy problem (3.1). Clearly,

B (AL), P(), ) = X, (t) / XU\ P(r)dr, tE [t b], (3.2)

where X, () is a fundamental matrix of differential equation (3.1) on the r-th subinterval.
The choice of a regular partition is another important part of the algorithm. We can start
with Aj, when the interval [0, 7] is not partitioned.

I. We divide [0, 7] into m parts by the points tg = 0 < t] < ... < typ—1 < t;, = T, involved
in the multipoint condition. The resulting partition we denote by A,,,,m =1,2,... .

I1. By solving mk Cauchy problems for ordinary differential matrix equations

‘C% = At)r + @i(t), z(t,—1) =0, t€ [tr_1,t,], (3.3)

we obtain the matrix functions

Er(A(),0i(),t), t€tr_1,ty], T=1,m, j=1k. (3.4)
I1I. We multiply each (n x n) matrix (3.4) by (n x n) matrix 1,(t), p = 1, k, and integrate
the products over [t,_1,t,] :

tr

Trrlo) = [ GOE (A0, 050, D0 (3.5)

r—1
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Summing up (3.5) with respect to r and taking into account (2.10), (3.2), we get (n x n)

matrices Gp (A pr: ), p,j =1k
r=1

We then construct (nk x nk) matrix G(A,,) = (Gpj(An)), p,j = 1,k, and determine
whether the matrix [I — G(A,,)] : R — R"* is invertible. If so, we find its inverse and
represent it as [I—G(A,)] ™! = (M, j(An)), where M, ;(A,,)) are (nxn) matrices, p, j = 1, k.
We then move on to the next step of the algorithm.

If [I — G(A,,)] is not invertible, i.e. the A,, partition is not regular, then we take a new
partition of [0, 7] and start the algorithm again. A simple way to choose a new partition is to
take Ao,,, dividing each subinterval A,, in half. We add to the points ¢t = ¢; of the multipoint
condition the points (t; — t;—1)/2, i = 1,m. Then, redesignating all points as 6y = ty = 0,
91 = (tl —to)/Q, (92 =1y, 95 = (tQ —tl)/Q, 94 =to, ..., 92m—1 = (tm — tm_l)/Q, 02m =ty = T,
we again get problem (2.1), (2.2) with multipoint conditions at the points ¢t = 0;, i = 0, 2m.

IV. Solving again the Cauchy problems for ordinary differential equations

W A+ A, alten) =0, 1€l
dx
i Alt)z+ f(t), x(ty—1) =0, t€ [tr_1,t;], 7=1,m,

we obtain E, ,(A(-), A(-),t) and E.,(A(-), f(-),t), r = 1,m.

V. We evaluate the integrals 1//1\p7r = / Pp(t)dt,

tr—1

T (A /% M>Awm@wb/%wmwwmm.

tr—1

From (2.11), (2.12) and (3.2) we determine (n X n) matrices

Vor(Am) = U (A) + 3> i) i

=1 k=1

and n vectors  gp(f,Am) = ZlZJ\p,r(Am), p=1k r=1m.

VI. We construct the system of linear algebraic equations in parameters
Q«(Ap )N = —Fi(A,), A€ R"™. (3.6)

(=d+BnFn(An), F1(An), ...,

The elements of the matrix Q. (A,,) and the vector Fi.(A,,) =
16), (2.17), (2.18), where, by (3.2),

Fr-1(Ay)) € R™ are determined by the equalities (2.
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tr tr
we replace X, (¢,) / X, H7)pj(T)dr and X, (t,) / X, Hr) f(r)dr with By . (A(), 0 (), )
tr—1 tr—1
and E, .(A(-), f(-),tr), respectively. It follows from Theorem 2 that the invertibility of the
matrix Q«(A,,) is equivalent to the well-posedness of problem (2.1), (2.2). By solving system
(3.6), we get A* = (A}, \5,...,AF) € RM™,

VII. From the equalities

m k k
1= 30 (0 Mo D) Vs (Bm) )As + - Map(Am)gp(f: Aum) (3.7)
j=1 p=1 p=1
we determine the components p* = (uj, p3, ..., ;) € R™ and construct the function
k m tr
F =Y e+ [ omix] s, (3:8)
s=1 r=1 b1

Recall that \' = x*(¢,_1), where z*(t) is a solution to problem (2.1), (2.2). Hence, by solving
system (3.6), we get the values of the desired solution at the left endpoints of the partition
subintervals. In order to determine the values of the function z*(¢) at the remaining points of
the subintervals [t,_1, ¢, ), we solve the following Cauchy problems for the ordinary differential
equation:

d
S =AW+ F (1), altr) =N teltent), r=Tm.

Thus, the proposed algorithm contains seven interrelated parts.

If the fundamental matrices X,.(t), » = 1, m, are known, then the equalities (2.16), (2.17),
and (2.18) enable us to construct the system (3.6). Let \* = (A}, A5,...,A%) € R" be a
solution to (3.6). Then, using (3.7) and (3.8), we construct the function F*(¢) and determine
a solution to problem (2.1), (2.2) by the equalities

t
() = X, ()X, Mt )N 4 X (2) / XY ) F (r)dr, te[t_1,t,), r=1,m, (3.9)

tr—1

T
2 (T) = Xon(T) Xt 1), + Xon(T) / X, (7)) F*(7)dr. (3.10)

So, in this case the proposed algorithm provides the solution to the linear multipoint boundary
value problem for integro-differential equations (2.1), (2.2) in the form (3.9), (3.10). As is

KAZAKH MATHEMATICAL JOURNAL, 20:1 (2020) 103-124



Novel approach for solving multipoint BVP ... 117

known, it is not always possible to construct a fundamental matrix for the system of ordinary
differential equations with variable coefficients. For this reason, we propose the following
numerical implementation of the algorithm that is based on the fourth-order Runge-Kutta
method and Simpson’s rule.

1. Let us take a partition A, : to =0 < t1 < ... < tm_1 < t;,, = T. We divide each rth
subinterval [t,_1,t.], r = 1,m, into m, parts with the step size hy = (t, — t,— 1)/mr

Suppose that on each subinterval [t,_ 1 tr] a variable t takes on discrete values: ¢ = tr_1,
t=tr1+hp ..., t=t,_1+ (my — D)h,, t=t,. Let {tr—1,t,} denote the set of such points.

II. Using the fourth-order Runge-Kutta method, we obtain numerical solutions to the
Cauchy problems (3.1) and determine the values of (n x n) matrix E7.(A(-), ¢;(-), t) on the

set {t,_1,t,},r=1,m, j=1k.
IIL. Using the values of (n x n) matrices ;(s) and E,. (A('), goj(-),f> on {t,_1,t} and

applying Simpson’s rule, we determine (n x n) matrices

(1) / ST EM(AC), 03 ()T, pj=TF, r=T,m.

Summing up the matrices ‘EZS“(%) with respect to r, we get (n X n) matrices Gg’j(Am)

Z @hr (15), where h = (h1,ha, ..., hy) € R". We then construct (nkxnk) matrix GE(Am)

(Gh (Am)), p.j =1k

Determine whether the matrix [/ — G%(Am)] : R — R" is invertible. If so, we find
1= GHAW ™ = (MP,(An)), p.j = TF.

In the case [I — GTZ(Am)] is not invertible, we choose a new partition. In particular, as
shown above, each subinterval can be divided in half.

IV. Solving the Cauchy problem (3.5), (3.6) by the fourth-order Runge-Kutta method, we
get the values of (n x n) matrix E, ,(A(-), A(-),t) and n vector E, ,(A(-), f(-),t) on {t,—1,t},
r=1m.

V. By using Simpson’s rule on the grid {¢,_1,¢,}, we evaluate the definite integrals

= / Gpl(r)dr, Dl / Up(P)E(AQ), A(), 7)dr,

f) = / () B (A(), (), 7)dr, r=T,N, p=T,m.
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We determine (n x n) matrices V, ( m) and n vectors g, ( fiAp), r= =1,k, by the
k
equalities szr(A i Z oo (i) f;, gp (f, A, Zl/)
=1 =1
VI. We construct the system of linear algebraic equations in parameters
QHAWA = —FI(Am), A€ R™. (3.11)

The elements of the matrix QE(Am) and the vector FE(Am) = (—d+ BmF,é(Am), Ff‘(Am),

Fh (A,,)) are determined by the equalities

m—1
~ k k
DZ},@'(Am):ZEﬁT( ), tr) [Z ( )+¢]Z}, 1#r, ri=1,m,
j=1 =1
- k ko 5 R
DE (A) = 30 B (AC), 0500, t0) [ S0 ME(Am)VE(Am) + 05| + BEL(AC), AC), 1),
J=1 p=1

k ~ ~
FMN(Ap) =Y EN(AC), @i (),t0) D My (An)gp (D) + EL(AC), () 1), 7=T,m.
p=1

Using the constructed matrix (Q (Apm), we can establish the well-posedness of problem (2.1),
(2.2). Suppose the matrix Qh(A ) is invertible and the estimate ||Q+(A,) —Q"(A,)]| < e(h)

holds. If the inequality H[Qf( m)] 7| - e(h) < 1is true, then, by Theorem 4 [9, p.212], the
matrix Q.(A,,) is invertible. It follows then from Theorem 2.2 that problem (2.1), (2.2) is
well-posed.

By solving (3.11) we determine Ah € R"™. As noted above, the elements Ab =
(AR AR AR ) are the values of the approximate solution to problem (2.1), (2.2) at the
left endpoints of the subintervals: " (t,_1) = A", r = T,;m.

VII. In order to calculate the values of the approximate solution at the remaining points
of the set {t,_1,t,}, we first find

~ k ~
i =30 (D Ml AV )Ah+2 wIb(f Am), i =TF,

j=1 p=1
and then, using the fourth-order Runge-Kutta method, solve the Cauchy problems

dx
di

= Az + FMb), z(t,_1) =M, telt_it], r=Tm,
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where fﬁ(t) i (,UZ + Z 1/%?\?) (t).

Thus the algorithm allows us to find a numerical solution to problem (2.1), (2.2).

4 Multipoint problem for integro-differential equation with non-degenerate
kernel

Let us now turn to the original multipoint problem (1.1), (1.2). To solve the problem, we
will approximate the kernel of the integral summand by a degenerate kernel [6], [8], [24], [25].

By the Weierstrass polynomial approximation theorem, for any & > 0 there exist a number
k = k(e) and continuous on [0, 7] matrices ¢;(t), ¥;(7), 7 = 1,k, such that the following
inequality holds

T k
ma K(t )|dr < e. 4.1
max [ 1K) - el (4.1)

The set of matrices {¢;(t),v;(7),7 = 1,m}, satisfying (4.1), we will call the e-
approximating set for K (¢,7). The multipoint problem with degenerate kernel (2.1), (2.2),
corresponding to (1.1), (1.2), we will call the e-approximating problem for problem (1.1),
(1.2).

Assuming the e-approximating multipoint problem (2.1), (2.2) to be well-posed with
constant C, we find the solution to problem (1.1), (1.2) according to the following algorithm.
Step 0. By solving problem (2.1), (2.2), we get a function z(%)(t), which we take as an initial
approximation of the solution to problem (1.1), (1.2).

Step 1. Using z(9)(¢) and solving the e-approximating problem

d.’L‘ $+ngj /wj

A k
*/[K( =il } O(r)dr + £(t), te(0,T), (4.2)

0 Jj=1
ﬁé )=d, deR", (4.3)

i=0
we get the function z() ().
Continue the algorithm, in the ith step (i = 1,...) we solve the problem
T

4 w+Z<py [ witratryar

0
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z k
+ / (K (t,7) = 0i(0ey ()] D (r)dr + £(1), e (0,T), (4.4)
0 J=1
S Ba(t) = d. (4.5)
=0

and get the function = (t).

The well-posedness of the approximating problem ensures the feasibility of the algorithm
and allows us to construct the sequence (z((t)), i =0,1,....

The following assertion provides conditions for the convergence of the algorithm to the
unique solution of multipoint problem (1.1), (1.2) and the estimates for the difference between
the exact and approximate solutions to the problem.

Theorem 3. Let the e-approzimating problem (2.1), (2.2) be well-posed with constant C.
Suppose that the following inequality holds:

¢, =Kp-ec<1. (4.6)

Then the algorithm converges to x*(t) and the estimate

lz* —2@|y < (z)" - Crmax(|[ f1, 1]} (4.7)

1fq;§

is valid, where z*(t) and ) (t) are the unique solutions to problems (1.1), (1.2) and (4.4),
(4.5), respectively.

Proof. By assumption, there exists a unique solution to problem (2.1), (2.2) and it satisfies
the inequality
121 < Crmax(||f |1, |d])-

By solving problem (4.2), (4.3), we get z(1)(t). The difference Az (t) = z(D(t) — 2O (1)
satisfies the inequality

z k
220 < i e [ 150:5) = 32 5005l
"0 j=1

< G - e - Cp - max([| f]1, [|4]])- (4.8)

In the same way, by solving problem (4.4), (4.5), we get z(?)(t), and for the difference
Az (t) = 2O () — z0~D(t) we have

|AzD||; < Cp - - |AzE Dy = | Az V||, i=2,3,... . (4.9)
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The convergence of the sequence () (t)), i = 0,1,..., to the solution z*(t) of problem (1.1),
(1.2), as well as the uniqueness of this solution, follow from the inequalities (4.6) and (4.9).
The estimate is derived from (4.8) and (4.9). Theorem 3 is proved.

The conditions of Theorem 1 ensure the existence of a unique solution to problem (2.1),
(2.2.) and the validity of the estimate (2.23). The number N (k, A,,) in (2.23), as mentioned
above, does not depend on f(t) and d. We therefore can treat this number as a constant of
well-posedness of problem (2.1), (2.2). Hence, by Theorems 1 and 3, the following statement
holds true.

Theorem 4. Suppose that

(a) the set of the matrices {¢;(t),;(1),j = 1,k} is an e-approzimating set for K(t,T);
(b) Am € o(k, [0,T]);

(c¢) the matriz Q«(Ay,) : R™™ — R™ in (2.22) is invertible;

(d) the inequality 05, = N(k,A.,) - e < 1 holds.

1
Then problem (1.1), (1.2) is well-posed with constant C' =

-0

Nk, Ar).

The conditions of Theorem 3 are not only necessary but also sufficient for the well-
posedness of problem (1.1), (1.2).

Theorem 5. Problem (1.1), (1.2) is well-posed if and only if there exists the e-approzimating
multipoint problem (2.1), (2.2), that is well-posed with constant Cy, and the inequality (4.6)
holds true.

Proof. The sufficiency of the conditions of the theorem for the well-posedness of problem
(1.1), (1.2) follows from Theorem 3.

Let us prove the necessity. Assume that problem (1.1), (1.2) is well-posed with a constant
C'. Take € > 0 satisfying the inequality ¢-C' < 1/2. For chosen ¢ take k € N and continuous on
[0, T] matrices @;(t), ¥;(7), j = 1, k, satisfying inequality (4.1). Let us show that multipoint
problem (2.1), (2.2) with these matrices is well-posed and the constant Cj, of well-posedness
satisfies inequality (4.4). To this end, we use the following algorithm.

Step 0. By solving problem (1.1), (1.2), we get the function z(9)(¢).

Step i. Assuming "V (t), i =1,2,..., to be known, we solve the problem
k .

ei(05(7) = K (t,7)| 2D (r)dr, e 0,7,
=1

J

T T
% :A(t)x+/K(t,7')x(T)dT+f(t)+/{
0 0

m
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and get the function () (t).

It is easy to check that the algorithm converges to x*(¢) and the estimate

N C
"l < 35— - max(llf]l1, lll)), (4.10)

holds, where z*(¢) is the unique solution to problem (2.1), (2.2).

Since, by assumption, C' - & < 1/2; the well-posedness of the e-approximating problem
(2.1), (2.2) with constant Cj = 2C follows from (4.10). Taking into account the choice of
e >0, we get g = C), - < 1. Theorem 5 is proved.
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Acanosa A.T., Bakuposa D.A., Yremopa P.E. UHTET'PAJIIBIK-TNOOEPEHITIAJI-
MBIK TEHJIEY YIITH KOTT HYKTEJI ECEITI IITEIIVTE YKAHA TOCLIT

@pearoabM UHTEIPATILIK- U OEpeHIInaIbIK TeHIeyaep Kyieci YIIiH KOIHYKTel ecen
KapacCTBhIPBLIaLbl. ©3eri ailHbIraH WHTErpaIIbIK-TnddepeHnInaIIblK TeHAeyIep Kyiteci yirin
KOIHYKTeJI ecerr xkeke 3eprreseni. [lapamerprey oici apKbLIbl ©3eri aitHbIFaH HHTEIPAJIIHIK-
muddepeHnnaaabK TeHaeyaep Kyieci VIIiH KOIMHYKTe I eCeNTiH KUCHIHIbI MeNiTiMILTi M HiH,
mapTTaphl aJablHIbl. KapacThIpBLIBIIT OTBIPFAH €CENTIH XKYbIK »KOHE CAH/JIBIK, ITIeITiMIepin Tady
aJToOpuTMIepi YChIHBLIIBI. PpearonbM HHTErPaJIbIK-TuddepeHnnaiablK TeHaeyIep Kyheci
YIIiH KOIMHYKTEJ €CEeNTiH, KUCHIHJIbI MIEeITIM/IUNTIHIH KaXKeTTi XKoHe KETKIUIKTI mapTTrapbl
TaraifibIHIAJIbI. 3EPTTEIII OTBIPFAH €CEITiH »KYbIK, MeMIePiH Taby aJropuTMIep] armpoK-
CHMAIIHAAIAYIIL ©3€rl alfHbIFaH MHTErpPaJIIbIK-InddepeHIualIbK, TeHIeyIep »Kyiieci VIIiH
€CEIITIH, MeNTiM/Iepl HeTi3iHe TYPFBI3bLIJIb.

Kinrrik cezgep. @pearosbM MHTErpaIIbIK-InddEepEHIIAILIK, TeHIEYl, KO HYKTesl
€ecell, mapaMeTpJey 9Iici, aJI"OPUTM, TENIM/ILIK KPUTEPUiti.

Acanosa A.T., Bakuposa D.A., Yremosa P.E. HOBBIN I10XO/ K PEHIEHNIO MHO-
IF'OTOYEYHOU 3AIAYN J1JIsI UHTEI'PO-AN®PEPEHIINAJIBHOTO YPABHEHIS

PaccmarpuBaercs MHOroTrouedHasi 3aj@da JJjis CUCTEMbI UHTErPO-auddepeHnaabHbIX
ypasueruit @perosbma. OTHeTBHO U3YIALTCSI MHOIOTOYEYHAS 381214 JIJIsl CHCTEMbI HHTETPO-
nuddepeHnuaibHbIX yPABHEHUI ¢ BBIPOXKJIEHHBIM spoM. [losydeHbl ycioBusi KOPPEKTHOMR
Pa3penImMOCTH MHOTOTOUYETHON 3a/1a9u JIJIsi CUCTEMBI UHTErpO-1uPepPEeHITUAIBHBIX YPaBHE-
HUI C BBIPOXKJIEHHBIM $I/[POM METOJIOM IapaMmerpusaiuu. IIpesiokeHbl aaropuTMbl HAX0XKIe-
HUsI TPUOJIMKEHHBIX U YUCJIEHHBIX PEIIeHUN PacCMaTpUBAEMON 3a/iadu. YCTAHOBJIEHBI HEOO-
XOJMMbBIE U JJOCTATOYHBIE YCJIOBUS KOPPEKTHOM PaspenmMOCTH MHOTOTOYEYHON 3aJa9u sl
cucTeMbl HHTErpo-nuddepenimaabubix ypapaenuit @peprosbma. [TocTpoenbr ajroputMbr Ha-
XOXKJICHUST TPUOJINYKEHHDBIX PEIIeHUl UCC/IelyeMOoil 3a/1a9i Ha OCHOBE PEIIeHUi allpOKCHMU-
pyfoled 3aja49u Jjis CUCTeMbI HHTETIPO-TuddepeHnnaabHbIX YPABHEHUN ¢ BBIPOXKIEHHBIM $1-
poM.

Krouesnre ciioBa. Unterpo-muddepenimanbaoe ypapaeane OpearosbMa, MHOTOTOIETHAST
3aja4a, METOJ, [IapaMeTPU3AINH, aJITOPUTM, KPUTEPHUI PaspemrnMOCTH.
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